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Welcome! 

 

Cloudera Quickstart Beginner Tutorial 

 

Welcome to the Cloudera QuickStart VM tutorial! Following this tutorial will not only give you 

examples on how to get started with some of the tools provided in CDH (Cloudera's open source 

distribution including Apache Hadoop), but also give you a taste of what it means to ask bigger 

questions. By the end of this tutorial you will: 

 

• Understand how to use some of the powerful tools in CDH 

• Know how to setup and execute some basic business intelligence and analytics use cases 

• Be able to explain to your manager why they need to give you a raise! 

 

 

Getting Started 

 

Define a Business Question 

 

For the remainder of this tutorial, we will present examples in the context of a made-up 

corporation called DataCo, and our mission is to help the organization get better insight by 

asking bigger questions. 

 

Scenario: 

 

Your Management: is talking euphorically about Big Data... 

 

You: are carefully skeptical, as it will most likely all land on your desk anyway. Alternatively, it 

has already landed on you, with the nice project description of: Go figure this Hadoop thing out... 

 

 

Good to Know 

 

Any successful PoC needs to address something your organization cares about. Hence, the first 

thing you need to do is to: define a business question. 

 

It won't just impress your manager that you think big and have perspective on the business 

needs of your organisation (which in English means you just helped your manager to look 

good in front of his management). It will also help you to go through a well scoped PoC and 

get the investments you need to be successful. 

 

Without a well defined question, you won't know how to properly model your data, i.e. what 

structure to apply at query time, or what data sets and tools to use to best serve the use case. 
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Tutorial Exercise 1 

 

Ingest and Query Relational Data 

 

In this scenario, DataCo’s business question is: What products do our customers like to buy? To 

answer this question, the first thought might be to look at the transaction data, which should 

indicate what customers actually do buy and like to buy, right? 

 

This is probably something you can do in your regular RDBMS environment, but a benefit with 

Cloudera’s platform is that you can do it at greater scale at lower cost, on the same system that 

you may also use for many other types of analysis. 

 

What this exercise demonstrates is how to do exactly the same thing you may already know how 

to do with traditional databases, but in CDH. Seamless integration is important when evaluating 

any new infrastructure. Hence, it’s important to be able to do what you normally do, and not 

break any regular BI reports or workloads over the dataset you plan to migrate. 
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About Sqoop: 

 

Apache Sqoop is a tool that uses MapReduce to transfer data between Hadoop clusters and 

relational databases very efficiently. It works by spawning tasks on multiple data nodes to 

download various portions of the data in parallel. When you're finished, each piece of data is 

replicated to ensure reliability, and spread out across the cluster to ensure you can process it in 

parallel on your cluster. 

 

There are 2 versions of Sqoop included in Cloudera's platform. Sqoop 1 is a "thick client" and 

is what you use in this tutorial. The command you run will directly submit the MapReduce 

jobs to transfer the data. Sqoop 2 consists of a central server that submits the MapReduce jobs 

on behalf of clients, and a much lighter weight client that you use to connect to the server. The 

"Sqoop" you see in Cloudera Manager is the Sqoop 2 server, although Cloudera Manager will 

make sure that both the "sqoop" and "sqoop2" command are correctly configured on all your 

machines. 

 

 

To analyze the transaction data in the new platform, we need to ingest it into the Hadoop 

Distributed File System (HDFS). We need to find a tool that easily transfers structured data from 

a RDBMS to HDFS, while preserving structure. That enables us to query the data, but not 

interfere with or break any regular workload on it. 

 

Apache Sqoop, which is part of CDH, is that tool. The nice thing about Sqoop is that we can 

automatically load our relational data from MySQL into HDFS, while preserving the structure. 

 

With a few additional configuration parameters, we can take this one step further and load this 

relational data directly into a form ready to be queried by Impala (the open source analytic query 

engine included with CDH). Given that we may want to leverage the power of the Apache Avro 

file format for other workloads on the cluster (as Avro is a Hadoop optimized file format), we 

will take a few extra steps to load this data into Impala using the Avro file format, so it is readily 

available for Impala as well as other workloads. 

 

You should first open a terminal, which you can do by clicking the black "Terminal" icon at the 

top of your screen. Once it is open, you can launch the Sqoop job: 

 

 

sqoop import-all-tables \ 

    -m 1 \ 

    --connect jdbc:mysql://quickstart:3306/retail_db \ 

    --username=retail_dba \ 

    --password=cloudera \ 

    --compression-codec=snappy \ 

    --as-parquetfile \ 

    --warehouse-dir=/user/hive/warehouse \ 

    --hive-import 
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This command may take a while to complete, but it is doing a lot. It is launching MapReduce 

jobs to pull the data from our MySQL database and write the data to HDFS, distributed across 

the cluster in Apache Parquet format. It is also creating tables to represent the HDFS files in 

Impala / Apache Hive with matching schema. 

 

Parquet is a format designed for analytical applications on Hadoop. Instead of grouping your 

data into rows like typical data formats, it groups your data into columns. This is ideal for many 

analytical queries where instead of retrieving data from specific records, you're analyzing 

relationships between specific variables across many records. Parquet is designed to optimize 

data storage and retrieval in these scenarios. 

 

  



5 

 

Once the Sqoop job is complete, we can confirm that our data was imported into HDFS via the 

following commands: 

 

 

hadoop fs -ls /user/hive/warehouse/ 

 

hadoop fs -ls /user/hive/warehouse/categories/ 

 

 

These commands will show the directories and the files inside them that make up our tables: 

 

 

 
 

 

Note: The number of .parquet files shown will be equal to the number of mappers used by 

Sqoop. On a single-node you will just see one, but larger clusters will have a greater number 

of files. 

 

 

Hive and Impala also allow you to create tables by defining a schema over existing files with 

'CREATE EXTERNAL TABLE' statements, similar to traditional relational databases. But 

Sqoop already created these tables for us, so we can go ahead and query them. 
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We're going to use Hue's Impala app to query our tables. Hue provides a web-based interface for 

many of the tools in CDH and can be found on port 8888 of your Manager Node 

(localhost:8888).  

 

In the QuickStart VM, the administrator username for Hue is 'cloudera' and the password is 

'cloudera'. 

 

 

 
 

 

You’ll see the Hue application screen after you log in. 
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Click on the down arrow ( ) next to the QUERY label at the top of the Hue screen.  Then select 

EDITOR→IMPALA from the drop-down menus, as illustrated below.  

 

 

 
 

 

To save time during queries, Impala does not poll constantly for metadata changes. So the first 

thing we must do is tell Impala that its metadata is out of date. Then we should see our tables 

show up, ready to be queried: 

 

 

invalidate metadata; 

 

show tables; 

 

 

Click on the execute button ( ) to execute the above statements. 
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You can also click on the "Refresh Table List" icon on the left to see your new tables in the side 

menu. 

 

 

 
 

 

A prompt will appear after you click the refresh button, select the “Invalidate all metadata and 

rebuild index” option and the click the red REFRESH button. 

 

 

  
 

 

 

  

REFRESH 

EXECUTE 
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Now that your transaction data is readily available for structured queries in CDH, it's time to 

address DataCo’s business question. Copy and paste or type in the following standard SQL 

example queries for calculating total revenue per product and showing the top 10 revenue 

generating products: 

 

 
-- Most popular product categories 

select c.category_name, count(order_item_quantity) as count 

from order_items oi 

inner join products p on oi.order_item_product_id = p.product_id 

inner join categories c on c.category_id = p.product_category_id 

group by c.category_name 

order by count desc 

limit 10; 

 

 

Click on the execute button ( ) to execute the above statement. 

 

 

You should see results of the following form: 
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Clear out the previous query, and replace it with the following: 

 

 
-- top 10 revenue generating products 

select p.product_id, p.product_name, r.revenue 

from products p inner join 

(select oi.order_item_product_id, 

sum(cast(oi.order_item_subtotal as float)) as revenue 

from order_items oi inner join orders o 

on oi.order_item_order_id = o.order_id 

where o.order_status <> 'CANCELED' 

and o.order_status <> 'SUSPECTED_FRAUD' 

group by order_item_product_id) r 

on p.product_id = r.order_item_product_id 

order by r.revenue desc 

limit 10; 

 

 

Click on the execute button ( ) to execute the above statement. 

 

 

You should see results similar to this: 
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You may notice that we told Sqoop to import the data into Hive but used Impala to query the 

data. This is because Hive and Impala can share both data files and the table metadata. Hive 

works by compiling SQL queries into MapReduce jobs, which makes it very flexible, whereas 

Impala executes queries itself and is built from the ground up to be as fast as possible, which 

makes it better for interactive analysis. We'll use Hive later for an ETL (extract-transform-load) 

workload. 

 

 

CONCLUSION 

 

Now you have gone through the first basic steps to Sqoop structured data into HDFS, transform 

it into Avro file format (you can read about the benefits of Avro as a common format in Hadoop 

here), and import the schema files for use when we query this data. 

 

Now you have learned how to create and query tables using Impala and that you can use regular 

interfaces and tools (such as SQL) within a Hadoop environment as well. The idea here being 

that you can do the same reports you usually do, but where the architecture of Hadoop vs 

traditional systems provides much larger scale and flexibility. 
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Showing Big Data Value 

 

Going a Step Beyond 

 

Scenario: 

 

Your Management: is indifferent, you produced what you always produce - a report on 

structured data, but you really didn’t prove any additional value. 

 

You: are either also indifferent and just go back to what you have always done... or you have an 

ace up your sleeve... 

 

 

Tutorial Exercise 2 

 

Correlate Structured Data with Unstructured Data 

 

Since you are a pretty smart data person, you realize another interesting business question would 

be: are the most viewed products also the most sold? (or for other scenarios, the most searched 

for, the most chatted about…). Since Hadoop can store unstructured and semi-structured data 

alongside structured data without remodeling an entire database, you can just as well ingest, store 

and process web log events. Let's find out what site visitors have actually viewed the most. 

 

For this, you need the web clickstream data. The most common way to ingest web clickstream is 

to use Flume. Flume is a scalable real-time ingest framework that allows you to route, filter, 

aggregate, and do “mini-operations” on data on its way into the scalable processing platform. 

 

In Exercise 4, later in this tutorial, you can explore a Flume configuration example, to use for 

real-time ingest and transformation of our sample web clickstream data. However, for the sake of 

tutorial-time, in this step, we will not have the patience to wait for three days of data to be 

ingested. Instead, we prepared a web clickstream data set (just pretend you fast forwarded three 

days) that you can bulk upload into HDFS directly. 

 

Bulk Upload Data 

 

For convenience, we have loaded a sample (about 180K lines) of one month's worth of access 

log data into /opt/examples/log_data/access.log.2. 

 

Let's move this data from the local filesystem, into HDFS. 
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Go back to your Terminal window and execute the following commands from your Manager 

Node (i.e., the Cloudera Quickstart VM). 

 

 
sudo -u hdfs hadoop fs -mkdir /user/hive/warehouse/original_access_logs 

 

sudo -u hdfs hadoop fs -copyFromLocal /opt/examples/log_files/access.log.2 

/user/hive/warehouse/original_access_logs 

 

 

The copy command may take several minutes to complete. 

 

 

 
 

Verify that your data is in HDFS by executing the following command: 

 

 
 

hadoop fs -ls /user/hive/warehouse/original_access_logs 

 

 

 

You should see a result similar to the following: 

 

 

 
 

 

Now you can build a table in Hive and query the data via Impala and Hue. You'll build this table 

in 2 steps. First, you'll take advantage of Hive's flexible SerDes (serializers / deserializers) to 

parse the logs into individual fields using a regular expression. Second, you'll transfer the data 

from this intermediate table to one that does not require any special SerDes. Once the data is in 

this table, you can query it much faster and more interactively using Impala. 
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Click on the down arrow ( ) next to the QUERY label at the top of the Hue screen.  Then select 

EDITOR→HIVE from the drop-down menus, as illustrated below.  

 
 

 

 
 

 

We'll use the Hive Query Editor app in Hue to execute the following queries: 

 

 
CREATE EXTERNAL TABLE intermediate_access_logs ( 

    ip STRING, 

    date STRING, 

    method STRING, 

    url STRING, 

    http_version STRING, 

    code1 STRING, 

    code2 STRING, 

    dash STRING, 

    user_agent STRING) 

ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' 

WITH SERDEPROPERTIES ( 

    'input.regex' = '([^ ]*) - - \\[([^\\]]*)\\] "([^\ ]*) ([^\ ]*) ([^\ 

]*)" (\\d*) (\\d*) "([^"]*)" "([^"]*)"', 

    'output.format.string' = "%1$$s %2$$s %3$$s %4$$s %5$$s %6$$s %7$$s 

%8$$s %9$$s") 

LOCATION '/user/hive/warehouse/original_access_logs'; 
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CREATE EXTERNAL TABLE tokenized_access_logs ( 

    ip STRING, 

    date STRING, 

    method STRING, 

    url STRING, 

    http_version STRING, 

    code1 STRING, 

    code2 STRING, 

    dash STRING, 

    user_agent STRING) 

ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' 

LOCATION '/user/hive/warehouse/tokenized_access_logs'; 
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ADD JAR /usr/lib/hive/lib/hive-contrib.jar; 

 

 

 

 
 

 

 
 

INSERT OVERWRITE TABLE tokenized_access_logs 

SELECT * FROM intermediate_access_logs; 
 

 

 

 

 
 

 

  



17 

 

The final query will take a minute to run. It is using a MapReduce job, just like our Sqoop import 

did, to transfer the data from one table to the other in parallel. Again, we need to tell Impala that 

some tables have been created through a different tool. Switch back to the Impala Query Editor 

by clicking on the down arrow ( ) next to the QUERY label at the top of the Hue screen.  Then 

select EDITOR→IMPALA from the drop-down menus, as illustrated below. 

  

 

 
 

 

Enter the following commands: 

 

 

invalidate metadata; 

 

show tables; 
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You should see the two new external tables in the default database. 

 

 

 

 
 

 

Paste the following query into the Query Editor: 

 

 

select count(*),url from tokenized_access_logs 

where url like '%\/product\/%' 

group by url order by count(*) desc; 

 

 

You should see a result similar to the following: 
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By introspecting the results you quickly realize that this list contains many of the products on the 

most sold list from previous tutorial steps, but there is one product that did not show up in the 

previous result. There is one product that seems to be viewed a lot, but never purchased. Why?  

 

 

 
 

 

 
 

 

Well, in our example with DataCo, once these odd findings are presented to your manager, it is 

immediately escalated. Eventually, someone figures out that on that view page, where most 

visitors stopped, the sales path of the product had a typo in the price for the item. Once the typo 

was fixed, and a correct price was displayed, the sales for that SKU started to rapidly increase. 

  

MISSING??? 

2nd 

5th 

8th 

6th 

7th 

3rd 

1st 

4th 

> 10th 
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CONCLUSION 

 

If you hadn’t had an efficient and interactive tool enabling analytics on high-volume semi-

structured data, this loss of revenue would have been missed for a long time. There is risk of loss 

if an organization looks for answers within partial data. Correlating two data sets for the same 

business question showed value and being able to do so within the same platform made life 

easier for you and for the organization. 
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Advanced Analytics in the Same Platform 

 

Scenario: 

 

Your Management: is of course thrilled with the recent discoveries you helped them with - you 

basically saved them a lot of money! They start giving you bigger questions, and more funding 

(we really hope the latter!) 

 

You: are excited to dive into more advanced use cases, but you know that you’ll need even more 

funding by the organization. You decide to really show off! 

 

 

Note: Advanced analytics is what makes the difference in a very competitive market. It is 

what the industry is drooling about. Spark is an excellent tool to perform more advanced data 

processing: K-means, graph processing, and multi-step real-time heavy-duty ETL. If you are 

not familiar with these terms, there is plenty of documentation “on the internet”... 

 

 

Tutorial Exercise 3 

 

Relationship strength analytics using Spark 

 

You come up with a great idea that it would be interesting for the marketing team which 

products are most commonly purchased together. Perhaps there are optimizations to be made in 

marketing campaigns to position components together that will generate a strong lead pipeline? 

Perhaps they can use product correlation data to help up sales for the lesser viewed products? Or 

recover revenue for the product that was on the top 10 viewed, but not top 10 sold from last 

exercise? 

 

The tool in CDH best suited for quick analytics on object relationships is Apache Spark. You can 

compose a Spark job to do this work and give you insight on product relationships.  Enter the 

following statement at the Linux Terminal prompt: 

 

 

 

spark-shell --master yarn-client 
 

 

 

Note: It may take a bit of time before the Scala prompt appears.  If left alone for some time, 

the scala > prompt may become covered up by log messages from the cluster. Simply hit enter 

to refresh the prompt. 

 

  



22 

 

 
 

 

Once the scala> prompt has appeared, paste the following batches of code: 

 
 

// First we're going to import the classes we need 

 

import org.apache.hadoop.mapreduce.Job 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat 

import org.apache.avro.generic.GenericRecord 

import parquet.hadoop.ParquetInputFormat 

import parquet.avro.AvroReadSupport 

import org.apache.spark.rdd.RDD 

 

 

  

SCALA PROMPT 

EXAMPLE 

EXECUTION 

& OUTPUT: 
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// Then we create RDD's for 2 of the files we imported from MySQL with Sqoop 

// RDD's are Spark's data structures for working with distributed datasets 

 

def rddFromParquetHdfsFile(path: String): RDD[GenericRecord] = { 

    val job = new Job() 

    FileInputFormat.setInputPaths(job, path) 

    ParquetInputFormat.setReadSupportClass(job, 

        classOf[AvroReadSupport[GenericRecord]]) 

    return sc.newAPIHadoopRDD(job.getConfiguration, 

        classOf[ParquetInputFormat[GenericRecord]], 

        classOf[Void], 

        classOf[GenericRecord]).map(x => x._2) 

} 

val warehouse = "hdfs://quickstart/user/hive/warehouse/"; 

val order_items = rddFromParquetHdfsFile(warehouse + "order_items"); 

val products = rddFromParquetHdfsFile(warehouse + "products"); 

 

 

 

 

 
  

EXAMPLE EXECUTION & OUTPUT: 
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// Next, we extract the fields from order_items and products that we care about 

// and get a list of every product, its name and quantity, grouped by order 

 

val orders = order_items.map { x => ( 

    x.get("order_item_product_id"), 

    (x.get("order_item_order_id"), x.get("order_item_quantity"))) 

}.join( 

  products.map { x => ( 

    x.get("product_id"), 

    (x.get("product_name"))) 

  } 

).map(x => ( 

    scala.Int.unbox(x._2._1._1), // order_id 

    ( 

        scala.Int.unbox(x._2._1._2), // quantity 

        x._2._2.toString // product_name 

    ) 

)).groupByKey() 

 

 

 

 

 
 

  

EXAMPLE EXECUTION & OUTPUT: 
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// Finally, we tally how many times each combination of products appears 

// together in an order, then we sort them and take the 10 most common 

 

val cooccurrences = orders.map(order => 

  ( 

    order._1, 

    order._2.toList.combinations(2).map(order_pair => 

        ( 

            if (order_pair(0)._2 < order_pair(1)._2) 

                (order_pair(0)._2, order_pair(1)._2) 

            else 

                (order_pair(1)._2, order_pair(0)._2), 

            order_pair(0)._1 * order_pair(1)._1 

        ) 

    ) 

  ) 

) 

val combos = cooccurrences.flatMap(x => x._2).reduceByKey((a, b) => a + b) 

val mostCommon = combos.map(x => (x._2, x._1)).sortByKey(false).take(10) 

 

 

 

 

 
 

  

EXAMPLE EXECUTION & OUTPUT: 
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// We print our results, 1 per line, and exit the Spark shell 

 

println(mostCommon.deep.mkString("\n")) 

 

exit 

 

 

 

 
 

 

To better understand this script, you could read through the comments which aim to explain what 

each block does and the basic process we're going through. 

 

When we do a 'map', we specify a function that will take each record and output a modified 

record. This is useful when we only need a couple of fields from each record or when we need 

the record to use a different field as the key: we simply invoke map with a function that takes in 

the entire record, and returns a new record with the fields and the key we want. 

 

The 'reduce' operations - like 'join' and 'groupBy' - will organize these records by their keys so 

we can group similar records together and then process them as a group. For instance, we group 

every purchased item by which specific order it was in - allowing us to determine all the 

combinations of products that were part of the same order. 

 

CONCLUSION 

 

If it weren't for Spark, doing cooccurrence analysis like this would be an extremely arduous and 

time-consuming task. However, using Spark, and a few lines of Scala, you were able to produce 

a list of the items most frequently purchased together in very little time. 

 

EXAMPLE EXECUTION & OUTPUT: 

 

RESULTS 
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Showing "Data Hub" Value 

 

Unified Storage for All of Your Data 

 

Scenario: 

 

Your Management: can't believe the magic you do with data and is about to promote you and 

invest in a new team under your lead... when all hell breaks loose. You get an emergency call - 

as you are now the go-to person - and your manager is screaming about the loss of sales over the 

last three days... 

 

You: from slightly excited to under the gun in seconds...well, lucky for you there might be a 

quick way to find out what is happening... 

 

 

Tutorial Exercise 4 

 

Explore Log Events Interactively 

 

What you can do to enable guided drill down and exploration of data is to make it searchable. By 

indexing your data using any of the indexing options provided by Cloudera Search, your data can 

be searchable to a variety of audiences. You can choose to batch index data using the 

MapReduce Indexing tool, or as in our example below, extend the Apache Flume configuration 

that is already ingesting the web log data to also post events to Apache Solr for indexing in real-

time. 

 

 

Good to Know 

 

Flume is a scalable, real-time ingest framework that allows you to route, filter, aggregate, and 

perform "mini-operations" on data on its way into a scalable processing platform like CDH. 

However, you do want to minimize the logic done on its way into the cluster. This will assure 

ready availability for other workloads and prevent ingest bottlenecks. It still allows you to 

utilize the huge scalability of the CDH cluster for more heavy-duty processing. If you need to 

do some heavy-duty aggregations or multi-step ETL of incoming data, you should use Spark - 

an in-memory processing framework that scales with the rest of the processing framework and 

has advanced analytic capabilities built in. 

 

Note also that in real production systems it might be a better option to pipe any log events 

through syslog. This provides a more robust production deployment, as it does not depend on 

file appends. 
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The web log data in a standard web server log may look something like this: 

 

 

 
 

 

Solr organizes data similarly to the way a SQL database does. Each record is called a 'document' 

and consists of fields defined by the schema: just like a row in a database table. Instead of a 

table, Solr calls it a 'collection' of documents. The difference is that data in Solr tends to be more 

loosely structured. Fields may be optional, and instead of always matching exact values, you can 

also enter text queries that partially match a field, just like you're searching for web pages. You'll 

also see Hue refer to 'shards' - and that's just the way Solr breaks collections up to spread them 

around the cluster so you can search all your data in parallel. 

 

  



29 

 

Here is how you can start real-time-indexing via Cloudera Search and Flume over the sample 

web server log data and use the Search UI in Hue to explore it: 

 

 

Create your search index 

 

Ordinarily when you are deploying a new search schema, there are four steps: 

 

1. Creating an empty configuration 

 

For the sake of this tutorial, you won't need to actually execute steps 1 or 2, as we have 

included the configuration and the schema file in your cluster already. They can be 

reviewed by exploring /opt/examples/flume/solr_configs. 

 

If you were doing this on your own, you would generate the configs by executing the 

following command:  

 

 
You don't need to do this for this tutorial. We have already 

generated the configuration for you. This instruction is here in 

case you want to create your own index. 

 

 

2. Edit your schema 

 

You can view the modified sample schema at the following location in the Cloudera 

Quickstart virtual environment: 
 
   /var/lib/cloudera-quickstart/tutorial/media/schema.xml.txt  

 

The most common area that you would be interested in is the <fields></fields> section. 

From this area you can define the fields that are present and searchable in your index. 
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3. Uploading your configuration 

 

Execute the following statements at the Linux Terminal prompt: 

 
cd /opt/examples/flume 

 

solrctl --zk quickstart:2181/solr instancedir --create 

live_logs ./solr_configs 

 

 
 

 

4. Creating your collection 

 

Execute the following statement at the Linux Terminal prompt: 

 
 

solrctl --zk quickstart:2181/solr collection --create 

live_logs -s 1 

 

 

 
 

 
You can verify that you successfully created your collection in Solr by going to Hue and clicking on the 
menu icon at the upper left portion of the Hue window.   
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Select the INDEXES item from the Hue menu. 
 
 

 
 
 

 
Now you can see the collection that we just created, live_logs, click on it. 
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You are now viewing the fields that we defined in our schema.xml file 
 

 

 
 
 

Now that you have verified that your search collection/index was created successfully, we can 

start putting data into it using Flume and Morphlines. Flume is a tool for ingesting streams of 

data into your cluster from sources such as log files, network streams, and more. Morphlines is a 

Java library for doing ETL on-the-fly, and it's an excellent companion to Flume. It allows you to 

define a chain of tasks like reading records, parsing and formatting individual fields, and 

deciding where to send them, etc. We've defined a morphline that reads records from Flume, 

breaks them into the fields we want to search on, and loads them into Solr. This example 

Morphline is defined at /opt/examples/flume/conf/morphline.conf, and we're 

going to use it to index our records in real-time as they're created and ingested by Flume. 

 

Starting the Log Generator 

 

Your Cloudera Live cluster has a log generator for use with sample data. Start the log generator 

by running the following command at the Linux Terminal prompt:  
 
 
 

start_logs 
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You can verify that the log generator has started by running the following command at the Linux 

Terminal prompt: 

 
 
 

tail_logs 

 

 

 
 

 

When you're done watching the logs, you can hit <Ctrl + C> to return to your terminal. 

 

Flume and the morphline 

 

Now that we have an empty Solr index, and live log events coming in to our fake access.log, we 

can use Flume and morphlines to load the index with the real-time log data. 

 

The key player in this tutorial is Flume. Flume is a system for collecting, aggregating, and 

moving large amounts of log data from many different sources to a centralized data source. 

 

With a few simple configuration files, we can use Flume and a morphline (a simple way to 

accomplish on-the-fly ETL,) to load our data into our Solr index. 

 

You can use Flume to load many other types of data stores; Solr is just the example we are using 

for this tutorial. 
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Start the Flume agent by executing the following command at the Linux Terminal prompt: 

 
 
flume-ng agent \ 

    --conf /opt/examples/flume/conf \ 

    --conf-file /opt/examples/flume/conf/flume.conf \ 

    --name agent1 \ 

    -Dflume.root.logger=DEBUG,INFO,console 

 

 

This will start running the Flume agent in the foreground. Once it has started, and is processing 

records, you should see something like: 
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Now you can go back to the Hue user interface and click search icon ( ) from the right window 

panel. 
 
 

 
 
 

You will be able to search, drill down into, and browse the events that have been indexed. 
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For our story’s sake, we pretend that you started indexing data the same time as you started 

ingesting it (via Flume) to the platform, so that when your manager escalated the issue, you 

could immediately drill down into data from the last three days and explore what happened. For 

example, perhaps you noted a lot of distributed denial-of-service (DDoS) events and could take 

the right measures to preempt the attack. Problem solved! Management is fantastically happy 

with your recent contributions, which of course leads to a great bonus or something similar.  

 

CONCLUSION 

 

Now you have learned how to use Cloudera Search to allow exploration of data in real time, 

using Flume and Solr and Morphlines. Further, you now understand how you can serve multiple 

use cases over the same data - as well as from previous steps: serve multiple data sets to provide 

bigger insights. The flexibility and multi-workload capability of a Hadoop-based Enterprise Data 

Hub are some of the core elements that have made Hadoop valuable to organizations worldwide.  
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Tutorial Exercise 5 

 

Building a Dashboard 

 

In this exercise you will establish a dashboard using Hue.  Please note that some of the actions 

performed in the exercise may take some time due to system performance limitations. 

 

Click on the menu icon at the upper left potion of the Hue window. 

 
 

 
 

 

Select the DASHBOARD item from the Hue menu. 
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Click on the middle option in the list of Layout options. 

 

 
 

 
 

 

This will take you into the edit-mode where you choose different widgets and layouts that you 

would like to see.  You can choose a number of options and configuration here, but for now, just 

drag a timeline chart ( ) into the top gray row. 
 
 
 

 
 
 
 

  

DRAG A TIMELINE CHART 

TO THIS EMPTY GRAY ROW 

SELECT THIS OPTION 
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The system will automatically detect that the request_date attribute serves as the timeline 

parameter in the chart.  Change the time interval in the chart to 10 minutes.  Please note your 

system performance may be very slow when you attempt to do this due to processing being 

performed by the Cloudera Quickstart system to generate the chart.  Also, the chart that is 

generated will likely look different from the illustration below. 

 
 

 
 
 
 

Now we are going to add a pie chart to the dashboard.  Drag the pie chart icon ( ) over to the row area 
at the left side of the dashboard panel. 
 
 
 

 
 
 
  

CHANGE TO 10 MINUTES 

DRAG A PIE CHART 

TO THIS ROW AREA 
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You’ll then need to select the pie chart factor.  Select DEPARTMENT from the list of parameter 

options located at the top of the dashboard panel. 

 

 
 

 
 
 
 

We will now add a text facet to the dashboard.  First, we need to create a new row in the left 

dashboard panel area.  Click on the plus item ( ) located in the upper left portion of the 

dashboard panel. 
 
 
 

 
 
  

SELECT DEPARTMENT 

CLICK ON THIS AREA TO ADD A ROW 
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The new row has now been established.  Now drag the text facets icon ( ) over to the new row 

area at the left side of the dashboard panel. 
 
 
 

 
 
 
 

You’ll then need to select the text facets factor.  Select PRODUCT from the list of parameter 

options located at the top of the dashboard panel. 

 
 
 

 
 
 
 

You’ve completed the creation of the dashboard.  Click on the pencil icon ( ) to exit out of 

editor mode.  Then click on the disk icon ( ) to save the dashboard.  
 
  
 

 
 
 
  

DRAG THE TEXT FACETS ICON 

TO THIS ROW AREA 

SELECT PRODUCT 

EDIT MODE TOGGLE SAVE DASHBOARD 
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To return to the saved dashboard at a future date, enter into the dashboards area as previously 

specified and click on the dashboards icon ( ) located in the upper right portion of the panel.  

 

    
 

 
 
 
 

The saved dashboard will appear in the list.  Click on the live_logs item to access the saved 

dashboard. 
 
 
 

 
 
 
 

The saved dashboard should now appear in the dashboards area.   
 
 
 

 
 

ACCESS TO LIST OF SAVED DASHBOARDS 

CLICK ON TO ACCESS SAVED DASHBOARD 
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The End Game 

 

What Did We Learn? 

 

We hope you have enjoyed this basic tutorial, and that you: 

 

• Have a better understanding of some of the popular tools in CDH 

• Know how to set up some basic and familiar BI use cases, as well as web log analytics 

and real-time search 

• Are able to explain to your manager why you deserve a raise! 
 


