
1

Welcome!

Codio Big Data Lab Tutorial

Welcome to the Codio Big Data lab tutorial! Following this tutorial will not only give you

examples on how to get started with some of the tools provided in the Codio Big Data lab

environment, but also give you a taste of what it means to ask bigger questions. By the end of

this tutorial you will:

• Understand how to use some Big Data tools

• Know how to setup and execute some basic business intelligence and analytics use cases

• Be able to explain to your manager why they need to give you a raise!

Getting Started

Define a Business Question

In this short tutorial you are presented examples in the context of a made-up corporation called

DataCo, and your mission is to help the organization get better insight by asking bigger

questions.

Scenario:

Your Management: is talking euphorically about Big Data...

You: are carefully skeptical, as it will most likely all land on your desk anyway. Alternatively, it

has already landed on you, with the nice project description of: Go figure this Hadoop thing out...

Good to Know

Any successful PoC needs to address something your organization cares about. Hence, the first

thing you need to do is to: define a business question.

It won't just impress your manager that you think big and have perspective on the business

needs of your organization (which in English means you just helped your manager to look

good in front of his management). It will also help you to go through a well scoped PoC and

get the investments you need to be successful.

Without a well-defined question, you won't know how to properly model your data, i.e. what

structure to apply at query time, or what data sets and tools to use to best serve the use case.

2

Lab Exercise 1

Ingest and Query Relational Data

In this scenario, DataCo’s business question is: What products do our customers like to buy? To

answer this question, the first thought might be to look at the transaction data, which should

indicate what customers actually do buy and like to buy, right?

This is probably something you can do in your regular RDBMS environment, but a benefit with

a Big Data platform is that you can do it at greater scale at lower cost, on the same system that

you may also use for many other types of analysis.

What this exercise demonstrates is how to do exactly the same thing you may already know how

to do with traditional databases, but in Codio. Seamless integration is important when evaluating

any new infrastructure. Hence, it’s important to be able to do what you normally do, and not

break any regular business intelligence (BI) reports or workloads over the dataset you plan to

migrate.

3

About Sqoop:

Apache Sqoop is a tool that uses MapReduce to transfer data between Hadoop clusters and

relational databases very efficiently. It works by spawning tasks on multiple data nodes to

download various portions of the data in parallel. When you're finished, each piece of data is

replicated to ensure reliability, and spread out across the cluster to ensure you can process it in

parallel on your cluster.

To analyze the transaction data in the new platform, we need to ingest it into the Hadoop

Distributed File System (HDFS). We need to find a tool that easily transfers structured data from

a RDBMS to HDFS, while preserving structure. That enables us to query the data, but not

interfere with or break any regular workload on it.

Apache Sqoop is that tool. The nice thing about Sqoop is that we can automatically load our

relational data from MySQL into HDFS, while preserving the structure.

You must first open a terminal, which you can do by clicking the "Tools → Terminal" from the

top menu in your Codio Big Data Lab environment.

Once the Terminal window is open, execute the command presented below followed by pressing

the ENTER key at the Linux prompt to start logging your session in the screen.log file:

script screen.log

4

You can then enter the statement/command presented below followed by pressing the ENTER

key at the Linux prompt to launch the Sqoop data transfer job:

sqoop import-all-tables \

 -m 1 \

 --connect jdbc:mysql://localhost:3306/retail_db \

 --username=root \

 --password=codio \

 --compression-codec=snappy \

 --direct \

 --warehouse-dir=/user/hive/warehouse \

 --hive-import

This Sqoop command may take a while to complete, but it is doing a lot. It is launching

MapReduce jobs to pull the data from our MySQL database and write the data to HDFS,

distributed across the cluster in Apache Parquet format. It is also creating tables to represent the

HDFS files in Apache Hive with matching schema.

Parquet is a format designed for analytical applications on Hadoop. Instead of grouping your

data into rows like typical data formats, it groups your data into columns. This is ideal for many

analytical queries where instead of retrieving data from specific records, you're analyzing

relationships between specific variables across many records. Parquet is designed to optimize

data storage and retrieval in these scenarios.

5

Once the Sqoop job is complete, we can confirm that our data was imported into HDFS via the

following commands at the Linux prompt:

hadoop fs -ls /user/hive/warehouse/

hadoop fs -ls /user/hive/warehouse/categories/

Press the ENTER key on your keyboard after entering each of the above commands.

These commands will show the directories and the files inside them that make up our tables:

Note: The number of .parquet files shown will be equal to the number of mappers used by

Sqoop. On a single-node you will just see one, but larger clusters will have a greater number

of files.

Apache Hive also allows you to create tables by defining a schema over existing files with

'CREATE EXTERNAL TABLE' statements, similar to traditional relational databases. But

Sqoop already created these tables for us, so we can go ahead and query them.

We're going to use the Apache Hive command line interface in the Terminal window to query

our tables. Enter hive at the Linux command prompt followed by pressing the ENTER key to

start the application.

6

Now that your transaction data is readily available for structured queries in the Codio lab

environment, it's time to address DataCo’s business question. Enter the query statement

presented below followed by pressing the ENTER key at the Apache Hive prompt for

calculating the total number of ordered items in the most popular product categories:

-- Most popular product categories

INSERT OVERWRITE LOCAL DIRECTORY

'/home/codio/workspace/output/query1'

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

select c.category_name, count(order_item_quantity) as count

from order_items oi

inner join products p on oi.order_item_product_id = p.product_id

inner join categories c on c.category_id = p.product_category_id

group by c.category_name

order by count desc

limit 10;

The output will be placed into a file contained in the /home/codio/workspace/output/query1

folder. The raw output can be viewed by selecting the output file from the left file tree.

7

Enter the query statement presented below followed by pressing the ENTER key at the Apache

Hive prompt in the Terminal window to obtain the top ten revenue generating products:

-- top 10 revenue generating products

INSERT OVERWRITE LOCAL DIRECTORY

'/home/codio/workspace/output/query2'

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

select p.product_id, p.product_name, r.revenue

from products p inner join

(select oi.order_item_product_id,

sum(cast(oi.order_item_subtotal as float)) as revenue

from order_items oi inner join orders o

on oi.order_item_order_id = o.order_id

where o.order_status <> 'CANCELED'

and o.order_status <> 'SUSPECTED_FRAUD'

group by order_item_product_id) r

on p.product_id = r.order_item_product_id

order by r.revenue desc

limit 10;

8

The output will be placed into a file contained in the /home/codio/workspace/output/query2

folder. The raw output can be viewed by selecting the output file from the left file tree.

Enter exit; at the Apache Hive prompt in the Terminal window and then press the ENTER

key to exit the Apache Hive application.

Enter exit at the Linux Terminal prompt and then press the ENTER key to stop writing to the

screen.log file.

9

Enter the following commands at the Linux prompt in the Terminal window to copy the query

output files to the workspace folder:

cp ~/workspace/output/query1/000000_0 Lab1_query1.csv

cp ~/workspace/output/query2/000000_0 Lab1_query2.csv

Press the ENTER key after entering each of the above statements to execute them.

Please note the query output was placed in comma-separated values (CSV) format. Thus, the

copied file names in the workspace folder have been given a .csv extension.

In the Codio file tree, right-click on the screen.log file and download it to an accessible location

on your personal computer system. You will need to provide this file in your assignment

submittal. This file can be viewed in a text editor like Microsoft Notepad.

10

In the Codio file tree, right-click on each of the CSV files (Lab1_query1.csv and

Lab1_query2.csv) and download them to an accessible location on your personal computer

system. You will need to provide these CSV files in your assignment submittal.

11

You can open up the CSV files in Microsoft Excel for viewing. Excel will place the data in a

readable format that can be readily analyzed.

Lab1_query1.csv

Lab1_query2.csv

CONCLUSION

Now you have gone through the first basic steps to Sqoop structured data into HDFS, transform

it into Avro file format, and import the schema files for use when we query this data.

You have learned how to create and query tables using Apache Hive and that you can use regular

interfaces and tools (such as SQL) within a Hadoop environment as well. The idea here being

you can do the same reports you usually do, but where the architecture of Hadoop vs traditional

systems provides much larger scale and flexibility.

12

Showing Big Data Value

Going a Step Beyond

Scenario:

Your Management: is indifferent, you produced what you always produce - a report on

structured data, but you really didn’t prove any additional value.

You: are either also indifferent and just go back to what you have always done... or you have an

ace up your sleeve...

Lab Exercise 2

Correlate Structured Data with Unstructured Data

Since you are a pretty smart data person, you realize another interesting business question would

be: are the most viewed products also the most sold? (or for other scenarios, the most searched

for, the most chatted about…). Since Hadoop can store unstructured and semi-structured data

alongside structured data without remodeling an entire database, you can just as well ingest, store

and process web log events. Let's find out what site visitors have actually viewed the most.

For this, you need the web clickstream data. The most common way to ingest web clickstream is

to use Flume. Flume is a scalable real-time ingest framework that allows you to route, filter,

aggregate, and do “mini-operations” on data on its way into the scalable processing platform.

In this exercise you will bulk upload an existing web clickstream data set into HDFS directly.

Bulk Upload Data

For convenience, we have loaded a sample (about 180K lines) set of access log data into

the/home/codio/workspace/data/access.log.2 file in your Codio lab

environment.

Let's move this data from the local filesystem into HDFS.

13

You must first open a terminal, which you can do by clicking the "Tools → Terminal" from the

top menu in your Codio Big Data Lab environment.

Execute the command specified below followed by pressing the ENTER key at the Linux

Terminal prompt to start logging your session in the screen.log file:

script screen.log

14

Go into your Codio Terminal window and execute the following commands at the Linux prompt:

hadoop fs -mkdir /user/hive/warehouse/original_access_logs

hadoop fs -copyFromLocal -f ~/workspace/data/access.log.2

/user/hive/warehouse/original_access_logs

Press the ENTER key on your keyboard after you have entered each individual command. The

copy command may take several minutes to complete.

Verify that your data is in HDFS by entering the following command and pressing the ENTER

key at the Linux Terminal prompt:

hadoop fs -ls /user/hive/warehouse/original_access_logs

You should see a result similar to the following:

Now you can build a table in Apache Hive and then query the data. You'll build this table in 2

steps. First, you'll take advantage of Apache Hive's flexible SerDes (serializers / deserializers) to

parse the logs into individual fields using a regular expression. Second, you'll transfer the data

from this intermediate table to one that does not require any special SerDes. Once the data is in

this table, you can query and examine it much more easily.

15

Start the Apache Hive application by entering hive at the Linux command prompt in the

Terminal window followed by pressing the ENTER key.

Enter the code presented below followed by pressing the ENTER key at the Apache Hive

prompt to establish the intermediate access log data table:

CREATE EXTERNAL TABLE intermediate_access_logs (

ip STRING,

access_date STRING,

method STRING,

url STRING,

http_version STRING,

code1 STRING,

code2 STRING,

dash STRING,

user_agent STRING)

ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'

WITH SERDEPROPERTIES ('input.regex' = '([^]*) - - \\[([^\\]]*)\\]

"([^\]*) ([^\]*) ([^\]*)" (\\d*) (\\d*) "([^"]*)" "([^"]*)"',

'output.format.string' = "%1$$s %2$$s %3$$s %4$$s %5$$s %6$$s %7$$s

%8$$s %9$$s")

LOCATION '/user/hive/warehouse/original_access_logs';

16

Enter the code presented below followed by pressing the ENTER key at the Apache Hive

prompt in the Terminal window to establish the tokenized access log data table:

CREATE EXTERNAL TABLE tokenized_access_logs (

ip STRING,

access_date STRING,

method STRING,

url STRING,

http_version STRING,

code1 STRING,

code2 STRING,

dash STRING,

user_agent STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

LOCATION '/user/hive/warehouse/tokenized_access_logs';

17

You can verify the creation of the intermediate and tokenized access log data tables using the

DESCRIBE command at the Apache Hive prompt in the Terminal window.

DESCRIBE intermediate_access_logs;

DESCRIBE tokenized_access_logs;

Press the ENTER key on your keyboard after you have entered each of the above individual

commands.

18

Enter the statement/command presented below followed by pressing the ENTER key at the

Apache Hive prompt in the Terminal window to enable Apache Hive's flexible SerDes

(serializers / deserializers) functionality:

ADD JAR /opt/hive/lib/hive-contrib-3.1.2.jar;

Enter the statement presented below followed by pressing the ENTER key at the Apache Hive

prompt in the Terminal window to copy the parsed data from the intermediate_access_logs to

the tokenized_access_logs table:

INSERT OVERWRITE TABLE tokenized_access_logs

SELECT * FROM intermediate_access_logs;

19

The data transfer operation will take a minute to run. It is using a MapReduce job, just like the

Sqoop import did, to transfer the data from one table to the other in parallel.

Enter the query statement below followed by pressing the ENTER key at the Apache Hive

prompt in the Terminal window to find the top-ten viewed products by site visitors:

INSERT OVERWRITE

LOCAL DIRECTORY '/home/codio/workspace/output/query3'

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

select count(*) AS access_count,url

from tokenized_access_logs

where url like '%\/product\/%'

group by url

order by count(*) desc

LIMIT 10;

20

The output will be placed into a file contained in the /home/codio/workspace/output/query3

folder. The raw output can be viewed by selecting the output file from the left file tree.

Enter exit; at the Apache Hive prompt in the Terminal window and then press the ENTER

key to exit the Apache Hive application.

Enter exit at the Linux Terminal prompt and then press the ENTER key to stop writing to the

screen.log file.

21

Enter the command presented below followed by pressing the ENTER key at the Linux prompt

in the Terminal window to copy the query output file to the workspace folder:

cp ~/workspace/output/query3/000000_0 Lab2_query.csv

Please note the query output was placed in comma-separated values (CSV) format. Thus, the

copied file names in the workspace folder have been given a .csv extension.

In the Codio file tree, right-click on the screen.log file and download it to an accessible location

on your personal computer system. You will need to provide this file in your assignment

submittal. This file can be viewed in a text editor like Microsoft Notepad.

22

In the Codio file tree, right-click on the CSV file (Lab2_query.csv) and download it to an

accessible location on your personal computer system. You will need to provide this CSV file in

your assignment submittal.

You can open up the CSV files in Microsoft Excel for viewing. Excel will place the data in a

readable format that can be readily analyzed.

Lab2_query.csv

23

By introspecting the results, you quickly realize that this list contains many of the products on

the most sold list from previous tutorial steps, but there is one product that did not show up in the

previous result. There is one product that seems to be viewed a lot, but never purchased. Why?

Well, in our example with DataCo, once these odd findings are presented to your manager, it is

immediately escalated. Eventually, someone figures out that on that view page, where most

visitors stopped, the sales path of the affected product had a typo in the price for the item. Once

the typo was fixed, and a correct price was displayed, the sales for that SKU started to rapidly

increase.

MISSING???

2nd

5th

8th

6th

7th

3rd

1st

4th

> 10th

24

CONCLUSION

If you hadn’t had an efficient and interactive tool enabling analytics on high-volume semi-

structured data, this loss of revenue would have been missed for a long time. There is risk of loss

if an organization looks for answers within partial data. Correlating two data sets for the same

business question showed value and being able to do so within the same platform made life

easier for you and for the organization.

