5 Data Preparation

Before we can utilize the analytic power of Tableau, the very first step is connecting with the data. In a perfect world, we would have perfect, clean data that we could easily analyze in Tableau. But alas, in reality, the data that we need to use will most likely need to be cleaned, transformed, and managed before we can effectively use it in Tableau.

Tableau's philosophy with data preparation is to enable anyone at anytime to make fundamental changes to their data connection. This means the capabilities need four key attributes to empower you:

- Smart: They should apply automatically and have a deep sense of the data
- Fast: They need to operate at near real time even on big data
- **Repeatable**: They need to allow for changes to the underlying data, such as new values, rows, and columns
- **Flexible**: They need to allow you to make significant changes at any time while preserving your work

There are tools that exclusively help clean and reshape data. Many refer to these as **ETL** (**Extract, Transform**, and **Load**) tools. While Tableau is not an ETL tool, it has the ability to help clean or prepare data if it is not possible to clean or prepare it at the data source.

In this chapter, we will cover the following topics:

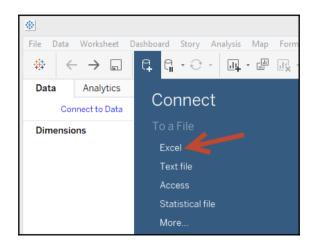
- Using the Data Interpreter and pivots
- Using the legacy Jet driver
- Using schema.ini to resolve data type issues
- Pivoting columns

- Using unions
- Using joins
- Using blends

Using the Data Interpreter and pivots

Tableau works best with clean, tall, and narrow data instead of short and wide data. The same measures should ideally be provided in a single column instead of spread out.

Let's clean up the following spreadsheet on Canada International Student Permits and ready it for Tableau:


	А	В	С	D	E	F	G	H	1	J	K	L	Μ	N
1	Canada - International stud	dents by de	stination	and year i	in which	permit(s) b	ecame ef	ffective, Q	1 2014 - Q	2 2016*				
2														
3				2014		T -4-1			2015		Total		2016	T -4-1
	Destination	Q1	Q2	Q3	Q4	Total unique**	Q1	Q2	Q3		I otal unique**	Q1	02	Total unique**
4		QI	QZ	Q.S	Q4	persons	QI	QZ	Q.S	Q4	persons	QI	QZ	persons
	Newfoundland and Labrador	234	227	664	253	1.322	212	212	920	352	1.649	348	352	694
6	Prince Edward Island	111	115	323	73	610	98	168	428	227	908	204	214	413
7	Nova Scotia	1.006	1.049	2.610	852	5.302	862	865	3.672	1.086	6.306	1.241	1,416	2.627
8	New Brunswick	389	417	1.010	385	2,146	316	341	1.272	433	2,302	481	480	952
9	Quebec	4,930	4.270	16,846	4,387	29,240	4,192	3,457	18,832	4,981	30,416	5.046	5.673	10,566
10	Ontario	14,526	19.362	40,968	17.628	88,923	12.069	15.262	51,875	21.358	97.061	17,727	25,774	42.822
11	Manitoba	824	1.050	2.033	1.022	4,729	821	1.051	3,604	1.633	6.863	1.642	1.866	3,436
12	Saskatchewan	536	644	1,210	536	2.833	474	651	2,112	756	3.879	810	931	1,704
13	Alberta	2,486	2,749	4,910	2.249	11,859	1,970	2.596	7,493	2.956	14,383	3,131	4.070	7.064
14	British Columbia	10,865	12,570	28,504	9,367	59,116	9,156	9,994	29,837	11,243	58,085	12,091	15,530	27,097
15	Northwest Territories			. 9		16			7		14	7	-	10
16	Nunavut		0	0			0		0			0	0	0
17	Yukon	7	6	10		23		5	17	8	34	9	21	29
18	Province/Territory not stated	2	7	16	9	34	3	9	39	28	79	12	30	42
19	Total unique** persons	35,909	42,439	99,064	36,747	205,428	30,167	34,602	120,086	45,062	221,279	42,737	56,329	97,320
20														
21	* Data for 2015 and 2016 are prelin											2014.		
22	** The total unique count may not e	qual to the sur	n of permit h	olders in eac	h destination	n as an individ	lual may hold	d more than o	one type of p	ermit over a	given period.			
23 24	N													
24	Notes: - Due to privacy considerations, so	me celle in thi	e table bave	been europrei	and and re	nlaced with t	he notation "	" An a rea	ult componer	te may not r	um to the tot	l indicated 1	n general w	a hava
25	suppressed cells containing less th												ii general wi	c lidve
25	- The table on Temporary Resident												has also her	en revised
	to count TRs, which includes Forei													
26	given year). As a result of the cha	nges above, ti	ne reports fo	r each permit	t holder type	has been se	parated in or	rder to enhar	nce clarity.		-			
27														
28	For further information, please refe	er to the Facts	and figures	2014 – Immiqi	ration overv	iew: Tempora	iry residents	overview, a	ind the gloss	ary of terms	and concepts	<u>.</u>		
29 30	Courses IDOO Juse 20, 2010 Date													
	Source: IRCC, June 30, 2016 Data													
31														

1. Download the file from the Citizenship and Immigration Canada website using the following URL:

http://www.cic.gc.ca/opendata-donneesouvertes/data/IRCC_IS_0004_E. xls

_____ [175] —___

2. Connect to the Excel file in this example. Make sure you choose **Excel** from the **To a File** section:

3. When you first connect to this Excel file, this is what you will see:

*			Ta	ableau - Boo	ok1						×
File Data Server Window Help											
	ଟ- IS - PRO	/INCE (IRCC_I	S_0004	4_E)		nnection Live O	Extract		Filters 0 Add	ł
Connections Add											
IRCC_IS_0004_E	IS - PROVINCE										
Sheets P	🗰 🗃 Sort fields Da	ata source oro	ler	•		SI	now aliases	Show hide	len fields 2	5 ⇒ ro	ws
Data Interpreter might be able to clean your Excel workbook.	Abc IS - PROVINCE F1	Abc IS - PROVINCE F2	Abc IS - PROVINCE F3	Abc IS - PROVINCE F4	Abc IS - PROVINCE F5	Abc IS - PROVINCE F6	Abc IS - PROVINCE F7	Abc IS - PROVINCE F8	Abc IS - PROVINCE F9	Abc IS - PROVINCE F10	AI IS F
IS - PROVINCE	Canada - Internationa	null	1								
	Destination	2014	null	null	null	null	2015	null	null	null	1
📆 New Union	null	Q1	Q2	Q3	Q4	Total unique** persons	Q1	Q2	Q3	Q4	
	Newfoundland and La	234	227	664	253	1,322	212	212	920	352	
	Prince Edward Island	111	115	323	73	610	98	168	428	227	
	Nova Scotia	1,006	1,049	2,610	852	5,302	862	865	3,672	1,086	
	New Brunswick	389	417	1,010	385	2,146	316	341	1,272	433	
	Quebec	4,930	4,270	16,846	4,387	29,240	4,192	3,457	18,832	4,981	
	Ontario	14,526	19,362	40,968	17,628	88,923	12,069	15,262	51,875	21,358	
	Manitoba	824	1,050	2,033	1,022	4,729	821	1,051	3.604	1.633	

- [176] -

4. The original Excel file is a common type of file that many data professionals have to work with. The Excel file has a header and a footer, and the measures are spread across the columns. The number of international students--a measure--is spread out across 13 columns.

This file needs to be cleaned up:

- The header and footer needs to be removed
- Year values need to be a dimension, since these are descriptors for the measure
- The measure, which is the number of international students, needs to be placed in a single column
- 1. Check the checkbox beside **Use Data Interpreter**. Note that when this checkbox is checked, the label changes to **Cleaned with Data Interpreter**:

File Data Server Window Help					
$\Rightarrow \leftarrow \rightarrow \square$	B- IS-PRO	VINCE (IF	RCC_IS_C)004_E)	
Connections Add					
IRCC_IS_0004_E	IS - PROVINCE				
Sheets ✓ Cleaned with Data Interpreter	🖽 📰 Sort fields Da	ata source order	•	1	
Review the results. (To undo changes, clear the check	Abc IS - PROVINCE Destination	# IS - PROVINCE 2014 Q1	# IS - PROVINCE 2014 Q2	# IS - PROVINCE 2014 Q3	# IS - PROVINCE 2014 Q4
	Newfoundland and La	234	227	664	253
	Prince Edward Island	111	115	323	73
📆 New Union	Nova Scotia	1,006	1,049	2,610	852
	New Brunswick	389	417	1,010	385
	Quebec	4,930	4,270	16,846	4,387

2. Select all fields except for Destination.

When we use the Tableau Data Interpreter, it will clean up the headers and footers, but will not clean up the year dimension and the measure for the number of international students. When we run the Data Interpreter, we can also choose to review the results by clicking on the provided link. The first tab, presented here, provides the key to what the Data Interpreter does:

	А	B C	D	E	F	G	Н	1	J	К	L
2		Key for U	nderstandir	ng the Dat	a Interpr	eter Resu	ts				
3											
4											
5		Use the k	ey to under	stand how	v your da	ta source	has beer	interpret	ted.		
6		To view t	he results, o	lick a wor	ksheet ta	b.					
7		Note: Tal	oleau never	makes cha	anges to y	your und	erlying da	ta source			
8											
9											
10											
11		Key:									
12		Data is	s interprete	d as colun	nn headei	rs (field n	ames).				
13		Data is	s interprete	d as value	s in your	data soui	ce.				
14		Data d	lerived from	n a mergeo	d cell is in	terpretec	l as value	in your d	ata source	2.	
15		Data is	s ignored an	d not incl	uded as p	oart of yo	ur data se	ource.			
16		Data h	as been exc	luded fro	m your da	ata sourc	2.				
17		Note:	To search fo	or all exclu	ided data	, use CRT	+F on W	indows			
18		or C	ommand F	on the Ma	ic, and th	en type ''	***DATA	REMOVED	***'.		
19											
20											
21		If the Dat	a Interprete	er has inte	rpreted t	he Tablea	au data so	ource inco	rrectly, cl	ose the sp	oreadsheet,
22		and the	en clear the	Cleaned w	vith Data	Interpret	er check l	box from t	the Data S	ource pa	ge.
23		If the Tab	leau data s	ource con	tinues to	be interp	reted inc	orrectly o	r for gene	ral inforn	nation
24		about v	vhy some da	ata was re	moved b	y the Dat	a Interpre	eter, refer	to		
25		Resolv	ing Common	Issues with	n Data Inte	rpreter Re	sults				
26		Help Tabl	leau improv	e the Data	a Interpre	ter by en	nailing yo	ur file to s	support@	tableau.c	om
27		or filing	a support i	request w	ith an att	ached file	at:				
28											
29		http://	tableau.com/	/support/re	equest						

3. To further clean our data source, we need to pivot the remaining so year the values and number of international students are stored in single columns. While the fields are selected, right-click and choose **Pivot**:

	Sort fields Data	a source order 🔹	Show aliases	Show hidden	n fields 15 🔿 rows
	# IS - PROVINCE 2015 04	# IS - PROVINCE 2015 Total unique	# IS - PROVINCE 2016 Q1	# IS - PROVINCE 2016 02	# ▼ IS - PROVINCE 201
920	352	1,649	348	352	Copy Values
428	227	908	204	214	Hide
3,672	1,086	6,306	1,241	1,416	Create Calculated Field
1,272	433	2,302	481	480	Pivot Merge Mismatched Fields
18,832	4,981	30,416	5,046	5,673	10,000
51,875	21,358	97,061	17,727	25,774	42,822

- 4. Right-click the new fields to rename them:
 - a. Change Pivot Field Names to Period
 - b. Change Pivot Field Values to International Students:

Abc	Abc	*	#	
IS - PROVINCE	Pivot		Pivot	
Destination	Pivot Field Names	5 E	Pivot Field Values	_
Newfoundland and La	2014 Q1	Renar	ne Values	234
Prince Edward Island	2014 Q1	Hide	values	.11
Nova Scotia	2014 Q1	Aliase	·5	006
New Brunswick	2014 Q1	Create	e Calculated Field	389
Quebec	2014 Q1	Create Split	e Group	930
Ontario	2014 Q1	1.1	m Split	526

c. Click on Addunderneath Filters:

□· IS - PROVINCE (I	Connection	Filters 0 Add
IS - PROVINCE		

5. In the **Select a field:** option, choose **Period**:

	Edit Data Source Filters ×
Filter	Details
	Add Filter
	Select a field: Enter search text
Add	E # International Students Destination Period

6. In the filter window for **Period**, under the **Wildcard** tab, type <code>Total</code> and check the **Exclude** checkbox:

			×			
General	Wildcard	Condition	Тор]		_
Match val	ue:				✓ Exclude	
Total						
Does	not contain				Clear	
O Does r	not start with					-
O Does r	not end with					
O Does r	not match					
✓ Includ	e all values wh	en empty				

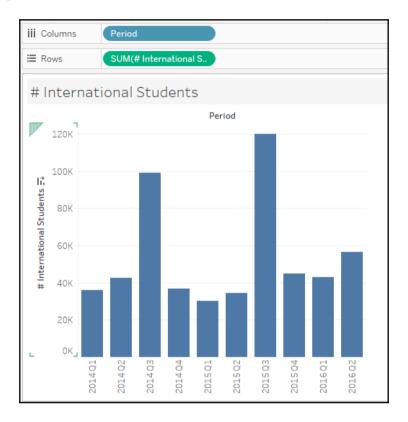
7. Once you click **OK**, you should see the following in the **Edit Data Source Filters** box:

	Edit Data Sourc	ce Filters ×
Filter	Details	
Period	excludes 2014 Total unique** per	sons, 2015 Total unique** persons and 20
	Edit Remove	
Add		

- 8. Click on **OK** when done. The original Excel file has some total fields, which we excluded, so that we can keep the granularity of the measure consistent; for example, we would not want to sum all the measures and the field for total unique persons.
- 9. Under Filters, click on Edit to add one more filter:

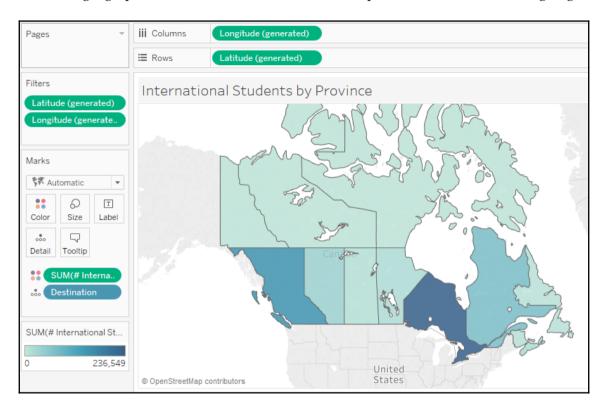
- 10. This time, choose the **Destination** field.
- 11. In the filter window for **Destination**, under the **Wildcard** tab, type Total and check the **Exclude** checkbox.

12. Once you click **OK**, you should see the following in the **Edit Data Source Filters** box:


	Edit Data Source Filters	3
Filter	Details	
Period	excludes 2014 Total unique** persons, 2015 Total unique** persons and 2	D
Destination	excludes Total unique** persons	
Add	Edit Remove OK Cance	

13. In the preview pane, click on the **Abc** symbol above **Destination** and change **Geographic Role** to **State/Province**:

Abc Number (decimal) Number (whole)	Abc Pivot Priod
Date & Time	2014 Q1
Date	2014 Q1
String Boolean	2014 Q1
Default	2014 Q1
	2014.01
Geographic Role	• None
ontano	Area Code (U.S.)
Manitoba	Busiest Airports
Saskatchewan	CBSA/MSA (U.S.)
	City
Alberta	Congressional District (U.S.)
British Columbia	Country/Region
	County
四, 日, 以	State/Province
	ZIP Code/Postcode


[182] ______

14. From here, we can create a new sheet and create visualizations that are easier to work with in Tableau. The following screenshot depicts the number of students per period:

- [183]

15. Since we have geocoded the **Destination** and assigned it the **State/Province** geographic role, we can also create a filled map to see where students are going:

[184] -

16. Although the **Destination** field is geocoded to **State/Province**, we will still need the **Country** information before we can successfully create a map. For this data set, we can simply set the country manually by going to the Mapmenu item, and selecting **Edit Locations**. We can set this to **Canada**:

Country/Region:	Canada O None				🔔 1 issue
Match values to loca	• Fixed:	Canada 🔺	4		•
A State/Prov	○ From field:	Period			-
			2-char codes	Both (ISO and FIPS	•
Province/Territo	ory not stated		Unrecogn	izeo	_
Alberta			Alberta		
British Columbi	a		British Co	lumbia	
Manitoba			Manitoba		
New Brunswick			New Brun	swick	
Newfoundland	and Labrador		Newfound	lland and Labrador	
Northwest Territ	tories		Northwest	t Territories	
Nova Scotia			Nova Scot	ia	
Nunavut			Nunavut		~

17. Alternatively, we can create a field for **Country** and use that in the geocoding.

18. You can probably see that there is additional cleanup and transformation that can be done. **Period**, for example, can be split further into year and quarter. We can even go as far as creating a date for the start of the period. This can be done using a calculated field:

I Rows	Period	Period DT
Period 2014 Q1 2014 Q2 2014 Q3 2014 Q4 2015 Q1 2015 Q2 2015 Q3 2015 Q4 2016 Q1 2016 Q2	Period DT 2014-01-01 2014-04-01 2014-07-01 2015-01-01 2015-04-01 2015-10-01 2015-01-01 2015-01-01 2016-01-01 2016-04-01	<pre>Period DT //pass in year, month, day MAKEDATE(INT(LEFT([Period],4)), ((INT(RIGHT([Period],1)) - 1) * 3) + 1, 1)</pre>

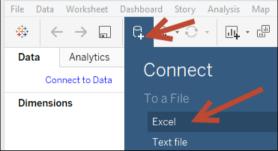
Using the legacy Jet driver

Let's use the New York Restaurant Inspections Excel file and use the legacy Jet driver to shape the file so that we can have both the inspection date and grade date in the same column.

The challenge here is that we often have a universal notion of date, that is, a date is a day that isn't specific to any events. We may want to summarize or aggregate measures based on this universal notion of dates. However, in reality, dates may exist in different fields with different contexts, and this can limit our ability to work on them as a single unit. In the Excel file for this recipe, we want to count how many restaurants were inspected and how many were graded for a specific date. The Excel file does not have a generic date field that allows us to count how many were inspected or graded. Thus, we need to re-shape our data so that **Inspection Date** and **Grade Date** exist in one column instead of two.

If we are using an Excel file as our data source, we can potentially use the legacy Jet connection, which allows custom SQL statements against the Excel file.

The legacy connection option was introduced in Tableau 8.2. You can learn more about this in the Tableau KB article *Differences between Legacy and Default Excel and Text File Connections,* which can be found at http://onlinehelp.tableau.com/current/pro/desktop/en-us/help.htm #upgrading_connection.html.

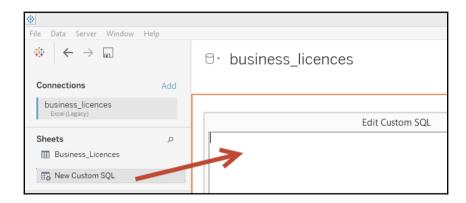

Download the file from the New York City Open Data website using the following URL:

```
https://nycopendata.socrata.com/Health/DOHMH-New-York-City-Restaurant-
Inspection-Results/xx67-kt59/data
```

Once you have downloaded the data, save the file as

DOHMH_New_York_City_Restaurant_Inspection_Results.xls (Microsoft Excel 97-2003 worksheet). Note that the records may have been updated between the time of writing and the time of your download:

1. Click on **New Data Source** icon, and choose **Excel**:


2. Choose DOHMH_New_York_City_Restaurant_Inspection_Results.xls, and select Open with Legacy Connection:

*			Open			×	
€ €	🔹 🏌 鷆 « Windov	vs8_OS (C:) → Tableau →	NY Open Data	~ ¢	Search NY Open Dat	a p	
Organize	 New folder 				· ==	• 🔟 🔞	
^	Name	*	Date modified	Туре	Size		
	DOHMH_New_Y	ork_City_Restaurant_Ins	2016-09-13 2:00 PM	Microsoft Exce	el 97 4,183 KB		
e • Y							
	File name:	DOHMH_New_York_City_	Restaurant Inspection	Results.xls 👻	Excel Workbooks (*	.xls:*.xlsx:*.xl ♥	
					Open 🔽	Cancel	
					Open	V	
						gacy Connection	

3. In the **Connections** window, remove the existing connection to the one sheet in the Excel file:

File Data Server Window Help	-
$*$ \leftarrow \rightarrow m	ම- DOHMH New York City Restaurant
Connections Add	
DOHMH_New_Yion_Results Excel (Legacy)	
Excer(Legacy)	DOHMH New York City R
Sheets p	Field names are in first row
DOHMH New Y Restaurant	Generate field names automatically
Rew Custom SQL	Duplicate Remove

4. Drag New Custom SQL to the main connection pane:

5. Add the following code to the Edit Custom SQL window:

```
SELECT
[DBA],
[CAMIS],
[CUISINE DESCRIPTION],
[INSPECTION DATE],
[GRADE DATE],
[INSPCTION DATE] AS [Date],
'Inspected' AS [Type]
FROM [DOHMH New York City Restaurant$]
UNION ALL
SELECT
[DBA],
[CAMIS],
[CUISINE DESCRIPTION],
[INSPECTION DATE],
[GRADE DATE],
[GRADE DATE] AS [Date],
'Graded' AS [Type]
FROM [DOHMH New York City Restaurant$]
```

6. In the preview window, click on the **Abc** symbol above the **Date** field and select **Date** to change the data type to Date:

Abc	*	Abc
Number (decimal) Number (whole)	Ē	Custom SQL Query Type
Date & Time		Issued
Date		Issued
String		Issued
✓ Default		Issued
Geographic Role 🕨		Issued
2015-12-05 09:16:11		Issued
2015-12-30 11:42:15		Issued

When we query our Excel spreadsheet, each tab will be treated as a table and referenced as the worksheet name with a \$ symbol at the end and enclosed in square brackets, like so: [DOHMH New York City Restaurant\$].

QuerySurge has a good short tutorial on using SQL against Excel spreadsheets here: http://bit.ly/QuerySurge-SQL-against-Excel.

What we will do in this query is stack two copies of the original data set on top of each other using the UNION ALL set operator, and introduce two new fields - **Date** and **Type**. This forces one field to contain the two dates we are interested in.

The first set uses **INSPECTION DATE** as the value for:**Date**, and **Inspected** as the value for **Type**. The second set uses **GRADE DATE** as the value for **Date**, and **Graded** as the value for **Type**. If you need to add additional fields for your analysis, you can simply add the field names to both SELECT statements.

Once we have the fields in place, we can analyze and visualize our data. For example, we can create a time series graph with trend lines. Since we have a single date field to consider, we can simply drag that **Date** field and create a continuous axis. Since we also have a single field to differentiate what event that date was related to, we can use that in **Color** in the **Marks** card to create two separate lines for the **Graded** and **Inspected** events:

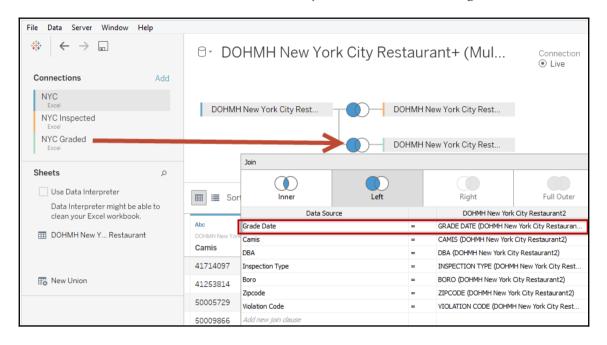
The measure in this example is **CNT(Date)** because **Date** will have a value if it is related to the event, and null (and will not be counted) if it is not.

Be careful when doing other kinds of analysis. Since we stacked two copies of our data set, we essentially doubled our record count.

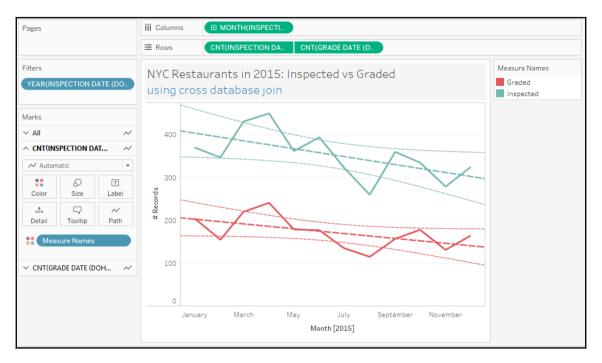
We are only using the legacy connection because our data source is an Excel file. If your data source is different, for example, if you are using a relational data source, you can re-shape the data using those data source's query mechanisms. In a relational data source, you may be able to do a union or a self-join at the data source level before the data is consumed by Tableau.

[191]

Tableau 10 introduces a new feature called cross database join, which we can also consider. Cross database join allows you to connect to multiple data sources and join them from within the Tableau connection interface. In the following example, we have essentially connected to the same Excel worksheet three times:


Each connection is a left join. The first one connects mainly based on the **INSPECTION DATE**. There are other fields being considered in the join to ensure we are only matching the correct records. Otherwise, we will end up with something called a cross join and may match one record to all other records of restaurants that were inspected on the same date:

File Data Server Window Help							
$\Rightarrow \leftarrow \rightarrow \square$	0. DC	HMH New Yo	rk City Restau	ırant ^{Conn} ⊛ Li	ection ve O Extract		
Connections Add							
NYC Excel NYC Inspected	DOHMH	New York City Rest	ООНМН	New York City Rest			
Excel		Join			×		
NYC Graded Excel		Inner	Left	Right	Full Outer		
Sheets p		Data So	urce		k City Restaurant1		
Use Data Interpreter	🔳 🔳 Sor	Inspection Date	=	INSPECTION DATE (DOHN	1H New York City Rest		
Data Interpreter might be able to	:= 30i	Camis	=	CAMIS (DOHMH New York	: City Restaurant1)		
clean your Excel workbook.	Abc			= DBA (DOHMH New York City Restaurant1)			
DOHMH New Y Restaurant	DOHMH New York	Boro		BORO (DOHMH New York City Restaurant1)			
	Camis	Zipcode	=	ZIPCODE (DOHMH New Y	ork City Restaurant1)		
	41714097	Violation Code	=	VIOLATION CODE (DOHMH New York City Rest			

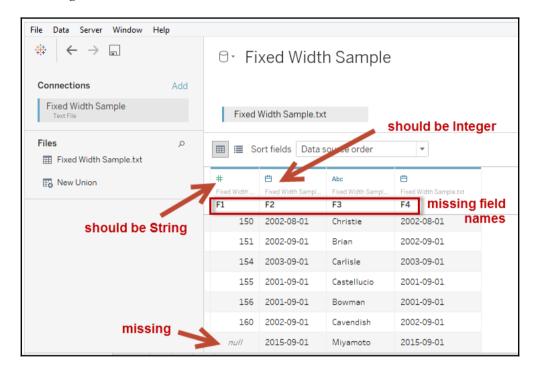

- [192]

Data Preparation

The second one connects mainly based on the **GRADE DATE**. As with the previous join, we also still need to consider other fields in the join to avoid mismatching records:

Once the connections are set up, we can create a similar visualization to the one we created using the legacy connection. The following visualization uses a slightly different approach. Since our measures come from different data sources, we are using a dual axis graph for the **COUNT of INSPECTION DATEs** from one data source, and **COUNT of GRADE DATEs** from another data source:

This will allow us to visualize how many restaurants were inspected and graded for a specific date:


	н		К	N	0	P
1	CUISINE DESCRIPTION	INSPECTION DATE	VIOLATION CODE	SCORE	GRADE	GRADE DATE
2	Indian	02-18-2016	10B	13	Α	02-18-2016
3	American	05-19-2016	02G	13	Α	05-19-2016
4	Chinese	04-09-2015	04L	26	В	04-09-2015
5	Tex-Mex	08-07-2014	10F	10	Α	08-07-2014
6	Caribbean	12-18-2014	04L	6		
7	Japanese	07-23-2013	08A	32		
8	Bakery	01-06-2016	04N	20	В	01-06-2016
9	Bakery	05-28-2015	04L	9	Α	05-28-2015
10	Russian	04-30-2015	08A	27		
11	Hotdogs	12-07-2015	08A	13		
12	Latin (Cuban, Dominican, Puerto R	06-09-2014	06C	11		
13	Chinese	05-14-2015	10F	7	Α	05-14-2015
14	American	03-14-2014	10F	12	Α	03-14-2014
15	Asian	01-28-2014	06E	22		
16	Seafood	12-11-2014	04H	13	Α	12-11-2014
17	Café/Coffee/Tea	10-16-2015	10F	9	Α	10-16-2015
18	Bakery	10-04-2014				
19	Café/Coffee/Tea	08-06-2014	10F	8	A	08-06-2014

Using schema.ini to resolve data type issues

Connecting to text files can sometimes be more challenging than connecting to a database or server-based data source. Relational databases will typically have the data types and constraints built in. Tableau can read this metadata and interpret the correct types and settings for the data set.

Text files can be tricky. We usually need to identify delimiters (that is, how is one field separated from another). If we want headers, we will need to either manually assign them from within Tableau, or override them in a configuration file.

If we connect to the file from Tableau without a configuration (or schema.ini) file, this is what we will get:

There are a few things that are incorrect or missing:

- The field names are missing.
- The first field contains a **null** value for the very last record, because Tableau assumes this field is numeric based on the first few rows. The last record has an alphanumeric value of C160, which is invalid for a numeric field. Show how to change with just default text driver properties clicking on the dropdown.
- The second field is interpreted as a date because the values, while numeric, can assume the format of *yyyymmdd*.

Tableau does allow us some flexibility when working with text files. When you click on the drop-down for the text file, there is an option for **Text File Properties**:

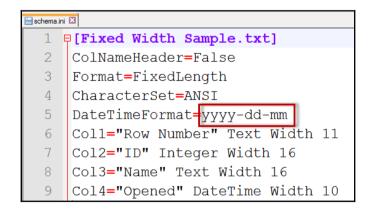
⊖- Fixed Width Sample						
Fib	ed	l Width Sampl	e.txt 🚽	,		
					Field names are in first row	
	🗰 🗮 Sort fields Data source			•	Generate field names automatically	
					Text File Properties	
#		#	Abc		Duplicate	
 Fixed Wid 		Fixed Width S	Fixed Width \$		Remove	
F1		F2	F3	-		
	1	2001-08	Gee		2001-08	
	2	2002-08	Harris		2002-08	

This provides another window that allows us to specify the field separators, text qualifiers (that is, character that encloses text values), character set, and locale:

Fixed Width Samp	ole.txt ×
Field separator: Text qualifier:	Space
Character set:	UTF-8
Locale:	English (Canada) 🔹

This still makes working with fixed width files without column headers a challenge. Microsoft recommends using schema.ini for all fixed length files. schema.ini provides a way to specify the data types and other configurations for the text file that Tableau can read. It does not solve all cases, but it can help with some.

The format, supported fields, and options for schema.ini are documented in the MSDN page called Schema.ini File (Text File Driver), which can be found at http://bit.ly/msdn-schema-ini.


Tableau also has a KB article called *Resolving Incorrect Data Type Issues Related to Jet,* which can be found at the following URL: http://bit.ly/tableau-jet-engine.

What we used in this recipe is one of the simpler text files that can be cleaned up using a schema.ini file. In reality, there are many limitations.

If we had spaces in the third column, for example, if record #2's name is *Harris Jr*, this is what we will get in Tableau even if we specified the width of the string in the schema.ini file:

Abc Fixed Width Sample.txt Row Number	# Fixed Width ID	Abc Fixed Width Samp Name	E Fixed Width Sample Opened	Eixed Width S
1	200108	Gee	2001-08-01	null
2	200208	Harris	null	2002-08
3	200109	Carreras	2001-09-01	null

What if the date format was yyyy-dd-mm and we specified it in the schema.ini like this?

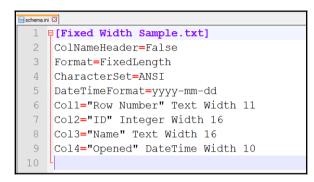
- [198] -

Tableau still uses the date format yyyy-mm-dd and ignores the specification in the schema.ini file:

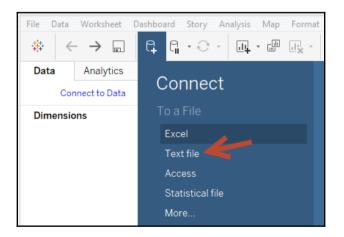
I IIII Sort fields	Data source	order	*
Abc Fixed Width Sample.txt Row Number	# Fixed Width ID	Abc Fixed Width Samp Name	Fixed Width Sample Opened
1	200108	Gee	2001-08-01
2	200208	Harris	2002-08-01
3	200109	Carreras	2001-09-01
4	200207	Gates	2002-07-01
5	200209	Harrington	2002-09-01

There are other variations that demonstrate the limitations of schema.ini. Sometimes, the best way to approach data wrangling problems is to either export to another format that Tableau can more easily read, or to resort to other tools, or even scripting. For example, Python, R, or even PowerShell are great, powerful scripting tools that can give you much more flexibility with how to shape your data.

Let's use a schema.ini file to resolve the data types when we connect to a fixed width text file data source with four columns.


Download this chapter's files from the Packt website and use the file called Fixed Width Sample.txt.

This is what the file looks like when opened in a text editor showing special characters:

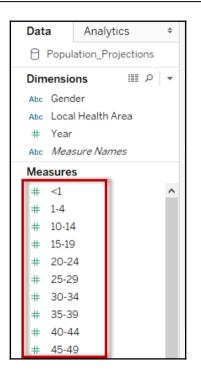

Fixed Wi	th Sample bt 🖸
95	150 20020801 Christie 2002-08-01
96	151 20020901 Brian 2002-09-01 CRLF
97	154 20030901 Carlisle 2003-09-01CRLF
98	155 20010901 Castellucio 2001-09-01CRLF
99	156 20010901 Bowman 2001-09-01 CRLF
100	160 20020901 Cavendish 2002-09-01
101	C160 20150901 <u>Miyamoto</u> 2015-09-01
97 98	15420030901Carlisle2003-09-01CRIF15520010901Castellucio2001-09-01CRIF15620010901Bowman2001-09-01CRIF16020020901Cavendish2002-09-01CRIF

Note that this file does not have any column headers. In addition, note the following:

- The first column should be text
- The second column should be integers
- The third column should be text
- The fourth column should be dates
- 1. Create a text file with the following contents:

- 2. Save the file as schema.ini and save it in the same directory as the Fixed Width Sample.txt file.
- 3. Connect to the text file in Tableau:

[200]


- 4. Confirm that there are four fields in the Tableau preview window, with the same configuration as specified in the schema.ini file:
 - First field is text
 - Second field is number
 - Third field is text
 - Fourth field is date:

File Data Server Window Help							
$* \leftarrow \rightarrow \square$	⊖- Fixed Width Sample						
Connections Add							
Fixed Width Sample Text File	Fixed Width Sample.txt						
Files ♀ ⊞ Fixed Width Sample.txt	🔳 🔳 Sort fiel	ds Data sourc	e order	•			
📸 New Union	Abc Fixed Width Sample.txt	# Fixed Width Sa	Abc Fixed Width Samp	Fixed Width Sample			
	Row Number	ID	Name	Opened			
	151	20020901	Brian	2002-09-01			
	154	20030901	Carlisle	2003-09-01			
	155	20010901	Castellucio	2001-09-01			
	156	20010901	Bowman	2001-09-01			
	160	20020901	Cavendish	2002-09-01			
	C160	20150901	Miyamoto	2015-09-01			

5. Add a new sheet and create your visualization using this data set.

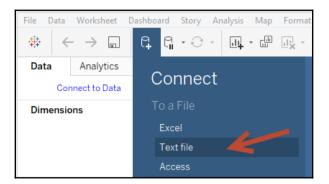
Pivoting columns

In the file that we are using, the measure field--population--is split by age group. Each population value for an age group is provided as a column, so we end up with multiple measures:

This format is hard to work with because all these measures are supposed to be a single measure. If we had a single measure for population values, and another dimension for age group, the analysis will be more flexible. We can slice and dice population by age group if we need to.

Tableau provides a way for us to shape this file by pivoting the values, using the original measure names as a dimension, and collecting all the population values into a single column. Although you may also be able to pivot at the data source level, it is great to have this capability within Tableau.

Let's prepare the data set and prepare the .csv file:


```
🗄 Population_Projections.csv 🛛
  1 "","Local Health
    Area", "Year", "Gender", "<1", "1-4", "5-9", "10-14", "15-19", "20-24", "25-29",
    "30-34", "35-39", "40-44", "45-49", "50-54", "55-59", "60-64", "65-69", "70-74"
    ,"75-79","80-84","85-89","90+","Total"
  2 "0", "British
    Columbia","1986","T","41594","167812","199209","196176","218240","25464
    1","273286","266181","248264","195669","156688","143634","144835","1392
    94", "120433", "100193", "66845", "40099", "19669", "10859", "3003621"
  3 "0", "British
    Columbia","1987","T","42094","169356","203820","196497","217006","24578
    3", "275003", "270902", "250563", "210829", "163396", "144435", "145743", "1399
    36", "126336", "102649", "70449", "42028", "20698", "11128", "3048651"
  4 "0", "British
    Columbia","1988","T","41941","172538","210669","199175","217883","23786
    5", "279202", "277893", "257289", "224097", "173461", "146619", "147392", "1418
    40","131991","103583","74296","44196","21624","11207","3114761"
```

- 1. Download the file from BCStats using the following URL: http://www.bcstats.gov.bc.ca/StatisticsBySubject/Demography/Population Projections.aspx
- 2. When you download, make the following selections and click on **Generate Output**:
 - Select British Columbia for Region
 - Select all the years
 - Select Totals
 - Select 5-Year Age Groups:

Sub-Provincial Population Projections - P.E.O.P.L.E. 2015 (Sep 2015)																
 Administrative boundaries (Reference maps) If you are authorized to access the Health Data Warehouse, click here. 																
Select a region type: Local Health Area																
Select region(s): Select year(s): Select sex(es): 0 - British Columbia 1 1 - Fernie 2035 2 - Cranbrook 2037 3 - Kimberley 2038 4 - Windermere 2039 5 - Creston 2040																
6 - Kootenay Lak	e				2041		T									
K 1 2	3 🕩	M	Page	size: 2	5 🔻								56 i	tems in	3 pages	
Local Health Area	Yea	Gende	<1	1-4	5-9	10- 14	15- 19	20- 24	25- 29	30- 34	35- 39	40- 44	45- 49	50- 54	55- 59	
British Columbia	198	т	4159	16781	19920	19617	21824	25464	27328	26618	24826	19566	15668	14363	14483	1
British Columbia	198	т	4209	16935	20382	19649	21700	24578	27500	27090	25056	21082	16339	14443	14574	1
British Columbia	198	т	4194	17253	21066	19917	21788	23786	27920	27789	25728	22409	17346	14661	14739	1
British Columbia	198	т	4365	17488	21762	20458	21749	23494	28454	28625	26727	23741	18431	15101	14775	1

3. Beside the results pane, click on the CSV icon at the top-right corner of the results pane to download the.csv file. Save the file as Population_Projections.csv.

4. Click on the **New Data Source** icon and connect to the text file in this recipe:

- 5. Select all the age groups that are presented as individual columns.
- 6. While all the age group columns are selected, right-click on one of the selected fields and choose **Pivot**:

	I II2 ➡ rows III2 ➡ rows									
	#	#	#	#	#	#	~	#	#	
r	Population_Pr	Population_Pr	Population_Pr	Population_Pr	Population_Pr	Populat	tion_Pr	Population	Population_I	
	60-64	65-69	70-74	75-79	80-84	8	Rena	me		
15	65,737	54,598	44,842	28,752	16,234			Values		3
0	73,557	65,835	55,351	38,093	23,865		Hide			38
12	66,709	57,481	45,745	30,090	17,035		Creat	e Calculated F	ield	.4
1	73,227	68,855	56,904	40,359	24,993		Pivot			37
1	68,599	60,247	45,956	31,727	17,868	_	Merg	e Mismatcheo	1 Fields	73
1	73,241	71,744	57,627	42,569	26,328	1	4,092	8,110	1,565,78	38
×	69,963	63,553	45,981	33,523	18,654		8,137	3,134	1,589,72	28
										-

7. Right-click on the newly created **Pivot Field Names** field and choose **Rename**. Rename this field **Age Group**.

8. Right-click on the newly created **Pivot Field Values** field and choose **Rename**. Rename this field **Population**:

I I Show aliases Show hidden fields 1.000 → rows									
Abc Pivot Age Group	# Pivot Population	# Populatio F1	Abc Population_Projections.csv Local Health Area	# Population Year	Abc Population_Projecti Gender				
1-4	86,618	0	British Columbia	1986	м				
1-4	81,194	0	British Columbia	1986	F				
1-4	87,216	0	British Columbia	1987	м				
1-4	82,140	0	British Columbia	1987	F				
1-4	88,559	0	British Columbia	1988	M				
1-4	83,979	0	British Columbia	1988	F				

- 9. Under Filters, click on Add.
- 10. In the Edit Data Source Filters window, click on Add.
- 11. In the Age Group filter window, select the Wildcard tab.
- 12. Type Total under Match value and check the Exclude checkbox:

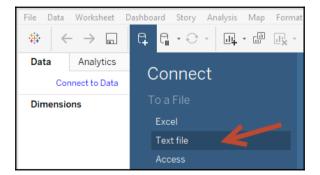
⊖- Population_Projections	Connection ● Live ○ Extract	Filters 0 Add
Population_Projections.csv	Filter [Age Group]	×
Edit Data Source Filters	General Wildcard Condition Top	
Filter Details	Match value:	✓ Exclude
Add Edit Remove	Does not contain Does not start with Does not end with Does not match Indude all values when empty	Clear

- 13. Click **OK** when done.
- 14. Add a new sheet and create your visualization using this data set.

Using unions

A union operation allows multiple sets of data to be appended to each other, that is, new records will be added to the end of the existing set of records.

Let's combine a number of **comma-separated value** (**CSV**) files into a single data set in Tableau:


1. Download the business license files from the City of Vancouver's website from http://data.vancouver.ca/datacatalogue/businessLicence.htm:

Data set details	Current Year
	1. Business licence (XML)
	2. Business licence (XLS) 📓 🛛 🥒
	3. Business licence (CSV) 🗟 🧲 🧮
	4. Business licence (JSON)
	Year 2015
	1. Business licence (XML)
	2. Business licence (XLS) 🛛
	3. Business licence (CSV) 🐴
	4. Business licence (JSON)
	Year 2014
	1. Business licence (XML)
	2. Business licence (XLS) 📓 💋
	3. Business licence (CSV) 🐴 🧲 🧮
	4. Business licence (JSON)

2. Download the CSV version, and save all the files in a local directory in your computer:

Windows8_OS (C:) → Tableau	▶ BC Open Data → Business License
Name	Туре
business_licences.csv	Microsoft Excel Comma Separated Values File
🔊 2015business_licences.csv	Microsoft Excel Comma Separated Values File
🔊 2014business_licences.csv	Microsoft Excel Comma Separated Values File
💫 2013business_licences.csv	Microsoft Excel Comma Separated Values File
2012business_licences.csv	Microsoft Excel Comma Separated Values File
2011business_licences.csv	Microsoft Excel Comma Separated Values File
2010business_licences.csv	Microsoft Excel Comma Separated Values File
2009business_licences.csv	Microsoft Excel Comma Separated Values File
2008business_licences.csv	Microsoft Excel Comma Separated Values File
2007business_licences.csv	Microsoft Excel Comma Separated Values File
2006business_licences.csv	Microsoft Excel Comma Separated Values File
2005business_licences.csv	Microsoft Excel Comma Separated Values File
2004business_licences.csv	Microsoft Excel Comma Separated Values File
2003business_licences.csv	Microsoft Excel Comma Separated Values File
2002business_licences.csv	Microsoft Excel Comma Separated Values File
2001business_licences.csv	Microsoft Excel Comma Separated Values File
2000business_licences.csv	Microsoft Excel Comma Separated Values File
1999business_licences.csv	Microsoft Excel Comma Separated Values File
1998business_licences.csv	Microsoft Excel Comma Separated Values File
1997business_licences.csv	Microsoft Excel Comma Separated Values File

3. Click on the **New Data Source** icon and connect to business_licenses.csv, which contains the most recent year's records:

- [208] -

4. Drag New Union to just underneath business_licenses.csv until you see the Drag table to union message:

File Data Server Window Help							
$* \leftarrow \rightarrow$		⊖- busine	ess_licences				
Connections	Add						
business_licences Text File		business_licer					
Files	Q	Drag tab	ble to union				
1997business_licences.csv							
1998business_licences.csv			•				
1999business_licences.csv							
2001business_licences.csv							
2002business_licences.csv							
2003business_licences.csv							
2004business_licences.csv		💷 📰 Sort fields	Data source order				
2005business_licences.csv							
2006business_licences.csv		#	Abc				
2007business_licences.csv		busings_licences.csv	business_licences.csv				
2008business_licences.csv							
2009business_licences.csv		2,558,952	16-100147				
2010business_licences.csv		2,558,953	16-100148				
2011business_licences.csv		2,558,954	16-100149				
2012business_licences.csv		2,558,955	16-100150				
2013business_licences.csv			16 100151				
2014business_licences.csv		2,558,956	16-100151				
2015business_licences.csv		2,558,957	16-100152				
business_licences.csv		2,558,958	16-100153				
E New Union		2,558,959	16-100154				

5. Select all other CSV files from the **Files** pane and drag them to the **Union** window:

*	
File Data Server Window Help	
$*$ \leftarrow \rightarrow m	⊖- business_licences
Connections Add	
business_licences Text File	business_licences.csv
Files o	Union ×
1997business_licences.csv	
1998business_licences.csv	Connection: business_licences
1999business_licences.csv	
2001business_licences.csv	
2002business_licences.csv	
2003business_licences.csv	
2004business_licences.csv	III III So
1 2005business_licences.csv	Drag tables here
2006business_licences.csv	#
2007business_licences.csv	business_licences
2008business_licences.csv	Licence RSN
2009business_licences.csv	2,558
2010business_licences.csv	2,558
2011business_licences.csv	2,558 Tables in union: 0 Apply OK
2012business_licences.csv	
2013business_licences.csv	2,558,555 10 100150
2014business_licences.csv	2,558,956 16-100151
2015business_licences.csv	2,558,957 16-100152
business_licences.csv	2,558,958 16-100153
🖽 New Union	2,558,959 16-100154

[210] ______

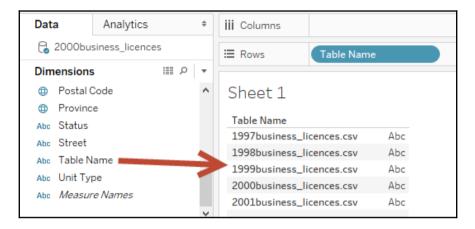
6. Click on **OK** after you confirm that all the files have been added to the **Union** window:

Union	×
Connection: business_licences	
1997business_licences.csv	
1998business_licences.csv	
1999business_licences.csv	
200 1business_licences.csv	
2002business_licences.csv	
2003business_licences.csv	
2004business_licences.csv	
2005bueinees licences cev	
Tables in union: 18 Apply OK	

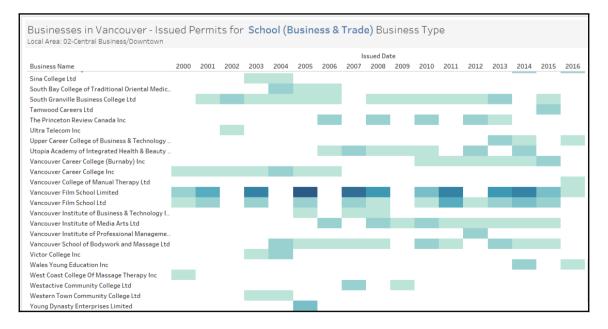
A union in relational databases requires what is called union compatibility. This means the two sets of records need to have the same number of columns and similar data types.

In Tableau, the union operation does not necessarily require union compatibility. If some of the incoming fields do not match the existing fields, the mismatched fields will simply have null values.

For example, if in some of our files, the **Business Name** field was called **Business Trade Name** instead, we can use Tableau's **Merge Mismatched Field** operation:


Abc business_licences.csv+ Business Name	Abc business_licences.csv+ Business Trade Name	- Renan	
null	null	Reset	
Aw Cut 'n' Blow Ltd	null	Copy Values	
Min & Susana Sum	null	Hide	
Chucks Pub	Heritage House Hotel Ltc	Create	e Calculated Field
Nasim Noorani & Ramzan Noorani	null	Pivot	K
Philip Chiang & Yuk Chiang	null	Merge	Mismatched Fields Penging

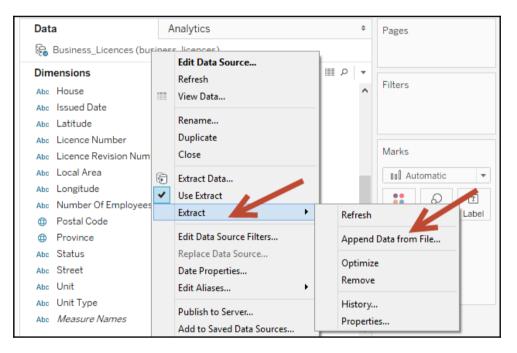
What this operation does is combine the fields into a single field in the resulting data set. It will take the first non-null value for this new combined field. Thus, we have to take care to ensure that the fields are indeed supposed to be the same but just named differently; otherwise, we risk losing information.


Should you need to undo the merge, Tableau also provides a way to remove the merge:

Abc	▼ A	.bc
Project	ь	usiness_licences.csv+
Business Name & Business Trade Name	E S	Status
null	Rename	
	Reset Nan	ne
Aw Cut 'n' Blow Ltd	Copy Valu	es
Min & Susana Sum	Hide	
Chucks Pub	Aliases	
Nasim Noorani & Ramzan Noorani	Create Ca Create Gro	Iculated Field pup
Philip Chiang & Yuk Chiang	Split	
(Connie Li)	Custom S	plit
(Milivoj Ceboci)	Pivot (sele	
(Onorina Depieri)	Remove n	
(Carol Egan)	Describe	

When we union files or worksheets, Tableau adds metadata fields in the resulting data set. Tableau has the **Table Name** dimension for text files, which uses the original file name as the value:

After we union our files, we can do our analysis. One possibility is a heat map. In the view below, we have a heat map of issued business licenses in downtown Vancouver. This type of visualization can indicate how long businesses have been operating:


- [213] -

In the past, a union with multiple worksheets in the same Excel workbook could be done using a custom SQL in Excel, if using the legacy Jet connection.

In Tableau 10, the union operator is baked into the product. In this version, union works with text files (including the.csv and .txt file extensions) and multiple worksheets in Excel if saved in a single workbook. What if you need to combine multiple Excel files?

One improvement that is being promised in the future, and was showcased in the 2015 Tableau conference, is a wildcard union. This allows the union to operate on multiple files based on specific patterns on the filename. While not available in the initial release of Tableau 10, this will for sure be a much-awaited feature improvement for this operator.

A possible alternative to adding multiple Excel files is using data extracts. When you create an extract, you can append additional records from another file:

This is more restrictive than the union operator because you need to ensure the worksheet names are the same. You also need to ensure union compatibility; otherwise, you may encounter errors during the extract process. The following error is produced by the field name mismatch between the original file in the extraction and the incoming field names in the file being appended:

Tableau	×
Unable to append data from file.	
Required columns are not present in the file with new data.	
Column [Licence Number] not present in the file with new data.	
Сору ОК Н	ide Details

This field mismatch issue can be resolved in the new Tableau 10 Merge Mismatched Fields feature.

Learn more about the union operator from the Tableau online documentation: https://onlinehelp.tableau.com/current/pro/desktop/en-us/union.html

– [215] –

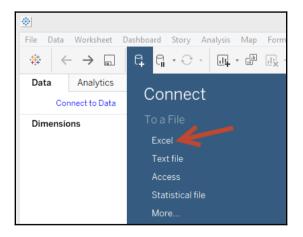
Using join

A join is primarily a relational database concept that allows you to combine records from different tables using common fields. When data sets are joined, all fields are combined based on the join conditions provided.

Joins are fundamentally different from unions. In unions, the record sets are stacked on top of each other, thus producing a taller result set. A join works by combining records and fields horizontally based on common fields, thus creating wider data sets that have all the combined fields together. A join also does not require union compatibility.

Before Tableau 10, joins were limited to combining tables from the same data source, that is, the tables needed to be using a single data connection. Tableau v10 adds flexibility to the join operation by allowing cross-database joins. Tables are no longer restricted to coming from the same data source. Joins can be done on file-based data sources as well. In Excel files, each tab or worksheet acts like a table with records. If your data source is text files, each file in a folder is considered a table.

In the following example, we can see that there are two color-coded connections on the lefthand pane. One is an Excel connection, and the other is a text file connection. In the middle connection window, we can see that the join operation was allowed between the two data sources:



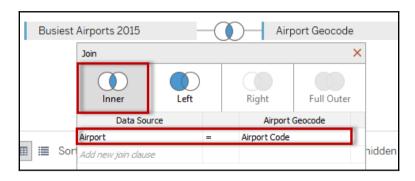
Let's combine the fields in two	different Excel worksheets into one:
---------------------------------	--------------------------------------

	А	В	с	D	E
1	Airport Code	Airport Name	Country	Latitude	Longitude
2	ATL	Hartsfield Jackson Atlanta International	United States	33.6367	-84.4281
3	PEK	Beijing Capital International	China	40.0799	116.6031
4	DXB	Dubai International	United Arab Emirates	25.2532	55.3657
5	ORD	Chicago O'Hare International	United States	41.9808	-87.9067
6	HND	Tokyo International	Japan	35.5494	139.7798
7	LHR	London Heathrow	United Kingdom	51.47	0.4543
8	LAX	Los Angeles International	United States	33.9425	-118.4072
9	HKG	Hong Kong International Kai Tak	Hong Kong	22.308	113.9185
10	CDG	Charles de Gaulle International	France	49.0097	2.5479
11	DFW	Dallas Fort Worth International	United States	32.8969	-97.0381
12					
13					
	< ->	Busiest Airports 2015 Airport Geocode	• +		1

Download this chapter's files from the Packt website and use the file called Worlds Busiest Airports-Join.xls.

1. Connect to the **Excel** file in this recipe. Make sure you choose Excel from the **To a File** section:

2. Drag **Busiest Airports** 2015 from the **sheets** section to the data connection window:



- 3. Drag **Airport Geocode** to the right of **Busiest Airports** 2015 in the data connection window.
- 4. In the **Join** window that comes up, choose **Airport** from **Busiest Airports 2015** to match up to the **Airport Code** field from the **Airport Geocode** sheet:

⊖, Bn	siest Airp	oorts	-	Connectior	C Extract	
Busiest	Airports 2015	-	-0) — Airp	ort Geocode	
	Join				×	
	Inner	Left		Right	Full Outer	
	Data Sou	rce		Airport G	Geocode	
	Airport		=	Airport Code		hidden fields
I III Sor	Add new join daus	e				nidden flêlds

5. Add a new sheet and create your visualization using this data set.

We combined two worksheets from the same Excel workbook. Records in both worksheets will be combined only if the **Airport** field from **Busiest Airports 2015** has the same value as the **Airport Code** field in the **Airport Geocode** worksheet. This join based on the equality of values is also called an equi-join:

Once the fields are joined, you will find the fields from both worksheets represented in the sidebar. Fields are grouped based on their source:

Data	Analytics	\$
🔒 Busiest Airp	orts 2015+ (World	ls Busiest
Dimensions		₩ P +
✓	ocode	
Abc Airport C	Code	
Abc Airport N	lame	
Country		
🗸 🖩 🛛 Busiest Air	ports 2015	
Abc Airport		
# Year		
Abc Measure N	ames	
Measures		
🗸 🖩 🛛 Airport Ge	ocode	
① Latitude		
① Longitud	le	
🗸 🖩 🛛 Busiest Air	ports 2015	
# Passeng	ers	
🌐 Latitude (g	enerated)	
Longitude (
=# Number of		
# Measure Va	alues	

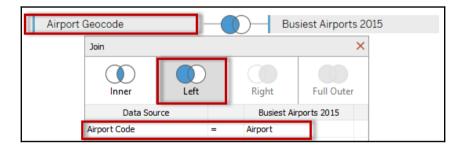
[219]


In general, we have two types of join: inner and outer joins.

Inner joins find matching values from both tables based on the join condition. The join condition is not always based on equality. There are cases where you may use other operators, such as greater than (>), greater than or equal to (>=), less than (<), less than or equal to (<=), or even not equal to (<>). Depending on the data source, some of these operators may not be supported.

Outer joins, also called preserving joins, preserve one or both sides of the tables as well as matching records. Outer joins can be further classified as left outer, right outer, and full outer. Some data sources do not support certain types of outer joins. Outer joins are positional; the placement of the tables relative to the JOIN operator affects the results.

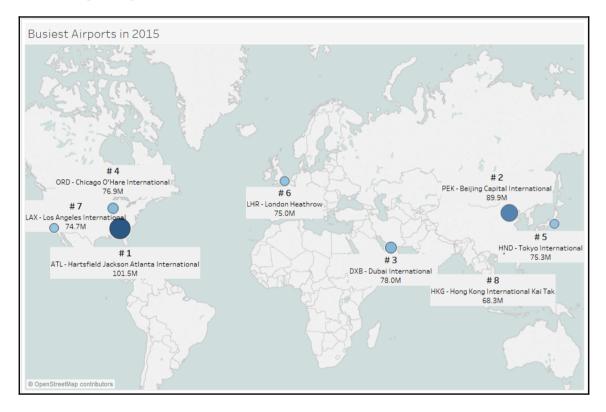
A left outer join preserves the table to the left of the join operator and finds the matching values from the table on the right side of the operator. If a record on the left table being preserved does not have a matching value in the right table, that record is preserved but the fields from the other table will show NULL. A NULL value means the absence of value.


Here is an example of a LEFT OUTER JOIN using our worksheet in this recipe. The records in the table to the left, **Busiest Airports 2015**, are matched up to the records to the right, **Airport Geocode**, based on **Airport** and **Airport Code** fields respectively:

Busiest Airports 2015 has a record for **Airport** value **CDG**, but this **Airport Code** does not exist in the **Airport Geocode** worksheet. Hence, as can be seen in the following screenshot, the corresponding **Airport Geocode** fields are reporting **Null** for the **CDG** airport:

Data	Analytics +	iii Columns					
🔓 Busies	t Airports 2015+ (Wor	⊞ Rows	Airport	S	JM(Passengers)	Airport Code	Airport Name
Dimension	ns Ⅲ P 🔻						
v 🖩 Airpo	rt Geocode	Airport	Passengers	Airport Co	de Airport Name		
Abc Air	oort Code	ATL	101,489,887	ATL	Hartsfield Ja	ackson A	
Abc Air	port Name	CDG	65,771,288	Null	Null		
Coi 🌐	untry	DXB	78,010,265	DXB	Dubai Interr	national	
-	st Airports 2015	HKG	68,342,785	HKG	Hong Kong I	nternati	
Abc Air		HND	75,316,718	HND	Tokyo Interr	national	
# Yez		LAX	74,704,122	LAX	Los Angeles	Internat	
H Tea Abc <i>Meas</i>		LHR	74,989,914	LHR	London Heat	throw	
Abc Meas	ure ivames	ORD	76,942,493	ORD	Chicago O'H	are Inter	
Measures		PEK	89,938,628	PEK	Beijing Capit	tal Inter	
	rt Geocode						
	itude						
· · · ·	ngitude						
-	st Airports 2015						
# Pas	sengers						

A right outer join is the reverse; it preserves the records from the right table and finds matching values from the left table. Right outer joins are not natively supported in Excel data sources. However, we could simply switch the data sources--putting **Airport Geocode** to the left and **Busiest Airports 2015** to the right --to achieve the same desired result:


Airport Geocode has a record for **DFW**, but the **Busiest Airports 2015** worksheet does not have this. The resulting records will report **Null** for the **Busiest Airports 2015** columns for the **DFW** record:

Data Analytics	¢	iii Columns				
🍃 Airport Geocode+ (Wo	rlds Busies	I Rows	Airport		SUM(Passengers) Airport Code	Airport Name
Dimensions	Ш р 🔻					
v 🖩 Airport Geocode	~	Airport	Passengers	Airport C	Airport Name	
Abc Airport Code		Null	Null	DFW	Dallas Fort Worth International	
Abc Airport Name		ATL	101,489,887	ATL	Hartsfield Jackson Atlanta International	
Country		DXB	78,010,265	DXB	Dubai International	
Busiest Airports 2015	5	HKG	68,342,785	HKG	Hong Kong International Kai Tak	
Abc Airport		HND	75,316,718	HND	Tokyo International	
# Year		LAX	74,704,122	LAX	Los Angeles International	
	>	LHR	74,989,914	LHR	London Heathrow	
Measures		ORD	76,942,493	ORD	Chicago O'Hare International	
Airport Geocode		PEK	89,938,628	PEK	Beijing Capital International	
Latitude						
Longitude						
v 🖩 Busiest Airports 2015	5					
# Passengers						

A full outer join preserves both tables being operated on. If the data source driver does not support this, a full outer join result can be derived by getting the result of the left outer join and appending it to the result of the right outer join.

There are a few other types of join--a self-join and a cross join. A self-join simply means that the same table is joined to itself. The actual join type can be inner or outer or even cross join. A cross join gets the cartesian product of the records in the tables being cross joined. When we get a cartesian product, we match up the records from one table to all records in the other table. If we have mof records in one table and nof records in another table, after a cartesian product, we will end up with $m \ge n$ records.

Once we have combined the fields, we can start visualizing our records. Here is a possibility - creating a map that depicts the busiest airports and ranks them based on the average number of passengers:

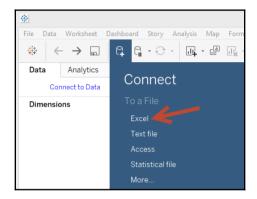
Using blends

Blends are great for data mashups. Blending in Tableau allows multiple data sources to be linked together. The data sources can be of different types - for example, one could be an Excel file while another could be a text file.

In previous versions of Tableau, blend was the only way from within Tableau to link multiple data sources together. Starting in Tableau 10, cross-database joins are supported.

[223]

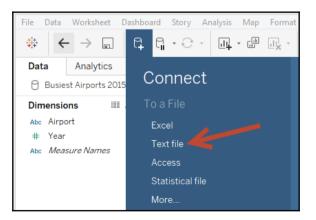
Let's combine the records from a text file and an Excel file using a blend:


- 1. Download this chapter's files from the Packt website and use the following files:
 - The Airport Geocode-Blend.csv file
 - The Worlds Busiest Airports-Blend.xlsx file
- 2. This is the content of the Airport Geocode-Blend.csv file:

🗎 Airport (Geocode - Blend cav 🖸
1	Airport Code, Airport Name, Country, Latitude, Longitude
2	ATL, Hartsfield Jackson Atlanta International, United States, 33.6367, -84.4281
3	PEK,Beijing Capital International,China,40.0799,116.6031
4	DXB, Dubai International, United Arab Emirates, 25.2532, 55.3657
5	ORD, Chicago O'Hare International, United States, 41.9808, -87.9067
6	HND, Tokyo International, Japan, 35.5494, 139.7798
7	LHR,London Heathrow,United Kingdom,51.47,0.4543
8	LAX,Los Angeles International,United States,33.9425,-118.4072
9	HKG,Hong Kong International Kai Tak,Hong Kong,22.308,113.9185
10	DFW, Dallas Fort Worth International, United States, 32.8969, -97.0381
10	DFW,Dallas Fort Worth International,United States,32.8969,-97.0381

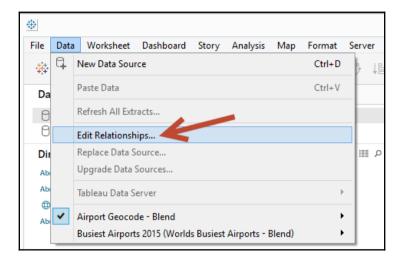
3. These are the records in the Worlds Busiest Airports - Blend.xlsx file:

	А	В	С
1	Airport	Year	Passengers
2	ATL	2015	101489887
3	PEK	2015	89938628
4	DXB	2015	78010265
5	ORD	2015	76942493
6	HND	2015	75316718
7	LHR	2015	74989914
8	LAX	2015	74704122
9	HKG	2015	68342785
10	CDG	2015	65771288
11	ATL	2014	96,178,899


4. Connect to the Excel file in this recipe. Make sure you choose **Excel** from the **To a File** section:

5. Go to new worksheet:

				×	DXB		
	Go t	Go to Worksheet					
O Data Source	Sheet 1	<u> </u>	₽₽	Ŭ1			


6. Click on the**New Data Source** icon, and this time connect to a **Text file**. Connect to the text file in this recipe:

7. If you are directed back to the initial connection screen, go back to Sheet 1.

- [225] -

8. Under the **Data** menu, click on **Edit Relationships**:

9. While **Airport Geocode-Blend** is selected as the **Primary data source**, click on **Custom** and match up **Airport Code** field to **Airport**:

		Relatio	nships	×
		ondary data sourc	es are joined with primary data sources	
	/ data source: t Geocode - Blend			-
	lary data source:	Automatic	Custom	
	st Airports 2015 (Worlds Busiest Air			
		Add/Edit I	ield Mapping	×
	Primary data source field:		Secondary data source field:	
	Enter search text		Enter search text	
	Airport Code		Airport	
	Airport Name		Year	
	Country			
<				

- 10. Click on **OK** when done.
- 11. While **Airport Geocode-Blend** is selected as the data source, drag Airport Code to the **Rows** shelf.

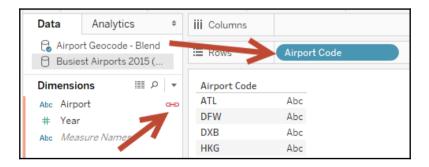
- [226] -

12. Switch data source to the Excel file. Notice that **Airport** now has an orange link icon beside it:

13. Continue to create your visualization using this dataset.

Note that the data sources must have some common fields before they can be blended in Tableau. By default, Tableau looks for the same field names in the data sources and links the sources together based on these fields.

However, if the fields have different names, Tableau will give a warning message indicating that there is no relationship between the data sources. You will also find that when you start using fields from one or both data sources, there will be a broken link icon:


Data	Analytics	¢	iii Columns						
· ·	ort Geocode - Blend est Airports 2015 (⊞ Rows	Year	Country	Ģ			
Dimensi		7	K		Warning	×			
⊕ Cou	ort Name	c/ə	th th	Fields cannot be used from the Airport Geocode - Blend data source, because there is no relationship to the primary data source. In the Data window, switch to the Airport Geocode - Blend data source, and click at least one link icon to blend these data sources.					
			Do not s	now again	ОК				

- [227] -

If the field names are different, the relationship needs to be defined. To do this, we can go to the worksheet menu and select **Edit Relationships**. From there, instead of **Automatic**, **Custom** can be chosen as well as identify which fields from both sources should match up:

Relationships									
Relationships determine how data from sec sources.	ondary data sou	rces are joined w	ith primary data						
Primary data source:									
Airport Geocode - Blend			•						
Secondary data source:	O Automatic	Custom							
Busiest Airports 2015 (Worlds Busiest A	Airport Code	Airport	t						
< >>									
	Add	Edit	Remove						
		OK	Cancel						

After the relationship is set, you will find that the link will be enabled. This link will only appear after you have dragged one of the blending fields in the view. If none of the blending fields are in the view, the icon will still appear as broken:

[228]

With a blend, there must be only one primary and at least one or multiple secondary data sources. The primary data source is identified by a blue check arrow icon beside it, and the secondary data sources have an orange check arrow icon:

Data	Analytics	¢	iii Columns		SUM(Passen	gers)	G				
~~ .	ort Geocode - Blend est Airports 2015 (⊞ Rows	1	Airpo	rt Code		Ð				
Dimensi Abc Airp # Year Abc Mea	ort	•	Airport Cide ATL PEK DXB ORD HND LHR LAX HKG DFW									
	s sengers nber of Records			ОM	10M	20M	30M	40M	50M	60M	70M	80M

Fields from the secondary data sources will automatically be aggregated when dragged into the view or used in a calculated field. The level of aggregation follows that of the primary:

Data	Analytics +	iii Columns	SUM(Passengers)
	rt Geocode - Blend est Airports 2015 (⊞ Rows	Airport Code
Dimensi	ons III A 🔻	Airport Code	
Abc Airp	ort 👄	ATL	
# Year		PEK	
Abc Mea	sure Names	DXB	
		ORD	
		Calculation 1	Airport Geocode - Blend
		fields	st Airports 2015 (Worlds Busiest Airports - Blend)].[Passengers]) from secondary are automatically gated when you drag them from the sidebar
Measure	s		
# Pass	sengers		
=# Nun	nber of Records		

— [229] —

Dimension fields will also be aggregated using the **ATTR** function. If there are many related records in the secondary data source and if there are multiple values for that field, the **ATTR** function will return an asterisk (*):

Data	Analytics +	iii Columns						
	ort Geocode - Blend est Airports 2015 (⊞ Rows	Airpo	rt Code	Airport	C Year	C.	
Dimensi Abc Airp		Sheet 3	6					
# Yea	r	Airport Code	-	Year	Abc			
Abc Mea	asure Names	ATL	ATL					
		DFW	Null	Null	Abc			
	Calculation1 Airport Geocode - Blend ATTR([Busiest Airports 2015 (Worlds Busiest Airports - Blend)].[Year])							

This leads to a common issue faced in blends when creating calculated fields. We need to make sure that we have the primary and secondary data source fields in an aggregated format when we use them in our expressions. Otherwise, we will get the error **Cannot mix** aggregate and non-aggregate arguments with this function:

Data Analytics +	Pages	iii Columns
Airport Geocode - Blend Busiest Airports 2015 (I Rows
Dimensions IIII P Abc Airport Code Abc Airport Name ⊕ Country Abc Measure Names		Busiest Airports 2015 (Worlds Busiest Airports - Blend) × Airport Geocode - Blend].[Airport Name])
	The calculation contains errors Cannot mix aggregat	e and non-aggregate arguments with this function.

Blend settings are per worksheet. If you create a new worksheet, the data source you drag from the first will be the primary.

Now that Tableau 10 supports cross-database joins, why would we still want to consider blending data? There are still some compelling reasons to go with blends. The first is, currently, the cross-database join functionality is not supported in all possible connections. Second, we may want to achieve a level of aggregation first before combining data sources.

_____ [230] —

Data Source 1 - Customer				Data Source 1 - Customer				Data S	ource 2 - Sal	es
Customer ID	Customer Name	Credit Limit		Customer ID	Order ID	Amount				
A01	John	500		A01	S01	100				
B02	Miyuki	100		A01	S02	200				
C03	Aisha	300		B02	S03	300				

To better illustrate this, let's consider the following two data sources:

If we were to use a join operation (specifically a left outer join, with the customer on the left side of the join operator so it is preserved), we would get the following result. The **Credit Limit** for **Customer IDA01** is incorrect because the credit limit was doubled--**\$1,000** is being reported when it really is only **\$500**:

Marks	Ŧ	iii Columns	Measure Names		
T Automatic	•	⊞ Rows	Customer ID	Customer Name	
Color Size	T Text	Result of a	Join		
		Customer ID	Customer Name	Credit Limit	Amount
Detail Tooltip		A01	John	\$1,000	\$300
T Measure Values		B02	Miyuki	\$100	\$300
Incasure values		C03	Aisha	\$300	
Measure Values SUM(Credit Limit) SUM(Amount)					

This is the nature of joins, however. The join is working perfectly - it finds the matching values from the other table. Since **Customer IDA01** bought twice, **Customer ID** from the **Customer** table matched twice to the **Sales** table and, inherently, reported the credit limit twice.

If we were to blend, however, we would get the following result set, reporting some different values:

Marks	iii Columns	Measure Names	3	
T Automatic 🔻	⊞ Rows	Customer ID	Customer Name	
Color Size Text	Result of a	Blend		
	Customer ID	Customer Name	Credit Limit	Amount
Detail Tooltip	A01	John	\$500	\$300
T Measure Values	B02	Miyuki	\$100	\$300
I Weasure values	C03	Aisha	\$300	
Measure Values SUM(Credit Limit) SUM(Amount)				

In a blend, the aggregation happens at the data source level first before the records from the two data sources are combined. Notice in the **Measure Values** card, the pill still says **SUM(Credit Limit)**--the same expression you see in the previous join operation. This time, though, the **SUM(Credit Limit)** happens at the customer data source only not at the resulting joined records. The **SUM(Credit Limit)** for **Customer IDA01** in the customer data source is still **\$500** because there is only one record for that **Customer ID** in that data source.

One more important thing to know about blends is that after the records in both data sources are aggregated to the same level, the records are combined using an operation akin to a left outer join. This means that if some values in the blending field are absent in the primary, they will not be reported at all.

For example, if our primary is the **Airport Geocode**, and it does not have the airport code **CDG** which our secondary has, **CDG** will not be pulled into any view:

Data	Analytics	¢	iii Columns							
 Airport Geocode - Blend Busiest Airports 2015 (⊞ Rows	Airport C	ode	Airport	G			
Dimensio Abc Airpo		Ŧ	Airport Geocode as Primary Airport Code Airport							
Abc Airport Name Country Abc Measure Names		ATL DFW T DXB T HKG H HND	ATL Null DXB HKG HND AX	Abc Abc Abc Abc Abc Abc						
			LHR I ORD (HR DRD DEK	Abc Abc Abc					

The same issue will occur even if we reverse the primary and secondary data sources, and if the new primary is missing some values that are present in the secondary. The following shows what you would see if we made **Busiest Airports 2015** the new primary data source, but it is missing the code for **DFW**:

Data	Analytics	\$	iii Columns	5				
 Airport Geocode - Blend Busiest Airports 2015 (⊞ Rows		Airport	Airport Code	G	
Dimension Abc Airpo # Year Abc Meas		Ŧ	Busiest Airports 2015 as Primary					
			Airport	Airpo	rt Code			
			ATL	ATL	Ab	c		
AUC IVICAS	sure marries		CDG	Null	Ab	c		
			DXB	DXB	Ab	c		
			HKG	HKG	Ab	c		
			HND	HND	Ab	c		
			LAX	LAX	Ab	c		
			LHR	LHR	Ab	c		
			ORD	ORD	Ab	c		
			PEK	PEK	Abc	c		
			DFW?					

– [233] –

There is no magic bullet solution for this issue, however. What we need is to have another data source that has the complete set of values and make that our primary. Or, if this is a data quality issue, this is great way to illustrate why data quality is of utmost importance with data analysis. Remember--good data in, good data (analysis/visualization) out; not-so-good data in, not-so-good data (analysis/visualization) out.

Summary

In this chapter, we covered how to prepare our data for effective use in Tableau. We covered Data Interpreter and pivots to clean our data source. We then used the legacy Jet driver to shape the file and schema.ini to resolve data type issues. Next, we covered pivoting the values into a single column. We also used unions to combine different data sets, and joins to combine records from different tables using common fields. Lastly, we used blends for data mashups.

In the next chapter, we will see how calculations can be used in many ways.

- [234] -